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Abstract
Recently, graph neural networks (GNNs) have
proved to be suitable in tasks on unstructured
data. Particularly in tasks as community detection,
node classification, and link prediction. However,
most GNN models still operate with static rela-
tionships. We propose the Graph Learning Net-
work (GLN), a simple yet effective process to
learn node embeddings and structure prediction
functions. Our model uses graph convolutions to
propose expected node features, and predict the
best structure based on them. We repeat these
steps recursively to enhance the prediction and
the embeddings.

1. Introduction
When working on unstructured information, commonly,
graphs are employed because they can represent this infor-
mation naturally. For instance, in social networks, system
recommendations, and link prediction, graphs can capture
the relationship between entities. In order to work on this
type of information, deep models on graphs were created
(Defferrard et al., 2016; Gori et al., 2005; Kipf & Welling,
2017; Scarselli et al., 2009). These models take into ac-
count the information of each node and its neighborhood
relationships when extracting new information (i.e., node
embedding). Unlike traditional models on graphs, which
still work on a static domain (i.e., graphs without variation
in the structure), Bresson & Laurent (2018); Li et al. (2016);
Marcheggiani & Titov (2017); Ying et al. (2018) began to
work on dynamic domains (i.e., variable graphs). However,
they still do not support extreme variations; i.e., complete
changes in the structure of graphs in each layer.

Related work. We classify the graph representation learn-
ing methods into two groups: generative models that learn
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the graph relationship distribution from latent variables, and
discriminative models that predict the edge probability be-
tween pairs of vertices.

For generative models, the Variational Autoencoder (VAE)
(Kingma & Welling, 2014; Sohn et al., 2015) proved to
be competent at generating graphs. Thus, methods based
on VAEs (Bojchevski et al., 2018; De Cao & Kipf, 2018;
Grover et al., 2018; Kearnes et al., 2019; Kusner et al., 2017;
Simonovsky & Komodakis, 2018) learn some probability
distribution that fits and models the graph’s relationships.
Other methods (Li et al., 2018; You et al., 2018) propose
auto-regressive models (i.e., generate node-to-node graphs)
to generate graphs with a similar structure. Nevertheless, we
consider relevant to contrast ourselves with the generative
methods since they aim to learn the structures (regardless of
the difference in the final task).

In contrast to the first group, the discriminative models do
not use conditional distributions to generate edges but di-
rectly aim to learn a classifier for predicting the presence
of edges. For this, a diversity of models based on GNNs
(Gori et al., 2005; Scarselli et al., 2009) were explored (dgl;
Battaglia et al., 2018). For example, methods for recom-
mendation systems on bipartite graphs were proposed by
Berg et al. (2018). Schlichtkrull et al. (2018) merged auto-
encoder and factorization methods (i.e., use of scoring func-
tion) to predict labeled edges. Besides, diverse approaches
try to take advantage of recurrent neural networks (Monti
et al., 2017), and heuristic methods (Donnat et al., 2018;
Zhang & Chen, 2018). Different from previous methods,
message-passing approaches (Battaglia et al., 2018; Gilmer
et al., 2017; Kipf et al., 2018) add edge embedding for each
relationship between two nodes. Similarly, we predict the
edges of the graph based on an initial set of nodes and a
configuration. However, we learn local and global transfor-
mations around the nodes, while transforming the features
too, in turn, enhance the structure prediction.

In this paper, we predict new structures from the local and
global node embedding in the graph through a recurrent set
of operations. In each application of our block, we adjust
the graph’s structure and nodes’ features. In other words,
we work with variable graphs to predict new structures.

Contributions. (i) Two prediction functions (for nodes’
features and adjacency) that lets us extract the most probable
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structure given a set of points and their feature embeddings,
respectively. (ii) A recurrent architecture that defines our
iterative process and our prediction functions. (iii) An end-
to-end learning framework for predicting graphs’ structure
given a family of graphs. (iv) Additionally, we introduce a
synthetic dataset, i.e., 3D surface functions, that contains
patterns that can be controlled and mapped into graphs to
evaluate the robustness of existing methods.

2. Graph Learning Network
Given a set of vertices V = {vi}, such that every element vi
is a feature vector, we intend to predict its structure as a set
of edges between the vertices, E = {(vi, vj) : vi, vj ∈ V }.
In other words, we want to learn the edges of the graph
G= (V,E) that maximize the relations between the vertices
given some prior patterns, i.e., a family of graphs.

To achieve this, we perform two alternating tasks for a given
number of times, akin to an expectation-maximization pro-
cess. At each step, we transform the nodes’ features through
convolutions on the graph (Kipf & Welling, 2017) using
multi-kernels to learn better representations to predict their
structure. Then, we merge the multiple node embedding
and apply function transform (Bai et al., 2019) on them that
combines the local and global contexts for the embeddings.
Next, we use these transformed features (local and global) in
a pairwise node method to predict the next structure, which
is represented through an adjacency matrix. The learned
convolutions on the graph represent a set of responses on the
nodes that will reveal their relations. These responses are
combined to create or delete connections between the nodes,
and encoded into the adjacency matrix. The sequential ap-
plication of these steps recover effective relations on nodes,
even when trained on families of graphs. We represent this
process in Fig. 1.

Node Embeddings. At a given step l on the alternating
process, we have dl hidden features, H(l) ∈Rn×dl , for each
of our n nodes, and the set of edges (structure) encoded
into an adjacency matrix A(l) ∈ [0, 1]n×n that represents
our graph. As introduced, our first step is to produce the
features of the next step, H(l+1), through the embedding

H(l+1) = λl

(
ηl

(
H(l), A(l)

)
, A(l)

)
. (1)

Our embedding comprises to steps: extracting k features
for the nodes, and combining them into an intermediary
embedding (2); and creating a local representation (5). For
the first step, we use convolutional graph operations (Kipf
& Welling, 2017)

H
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where k is the number of kernels, W (l)
i ∈ Rdl×dl+1 is the

learnable weight matrix for the ith convolutional kernel at
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Figure 1. Our proposed method is a recurrent block. We create a set
of node embeddings

{
H

(l)
i

}k

i=1
that are later combined to produce

an intermediary representation H
(l)
int . Then, we use the updated

node information with the adjacency information to produce a local
embedding of the nodes information H

(l)
local that is also the output

H(l+1). We also broadcast the information of the local embedding
to produce a global embedding H

(l)
global. We combine the local and

global embeddings to predict the next layer adjacency A(l+1).

the lth step, σl(·) is a non-linear function, and τ(·) is a
symmetric normalization transformation of the adjacency
matrix, defined by

τ
(
A(l)

)
=
(
D̂(l)

)− 1
2
(
A(l) + In

)(
D̂(l)

)− 1
2

, (3)

where D̂(l) is the degree matrix of the graph plus identity,
that is,

D̂(l) = D(l) + In, (4)

where D(l) is the degree matrix of A(l), and In is the iden-
tity matrix of size n × n. Unlike previous work (Kipf &
Welling, 2017), we are computing convolutions that will
have different neighborhoods at each step defined by the
changing A(l), in addition to multiple learnable kernels per
layer. In summary, this step allows us to learn a response
function, defined by the weights W (l)

i of the ith kernel, that
embed the node’s features into a suitable form to predict the
structure of the graph.

The second step corresponds to create a local-context embed-
ding from the intermediary representation (2) that depends
on the current adjacency. We define our local context λl as

H
(l)
local = λl

(
H

(l)
int , A

(l)
)

= σl

(
τ
(
A(l)

)
H

(l)
int U

(l)
)
, (5)

where U (l) ∈ Rdl+1×dl+1 is the learnable weight matrix for
the linear combinations of the nodes’ features H(l)

int .

Adjacency Matrix Prediction. After obtaining the nodes
embeddings, H(l)

local (5), we use them to predict the next
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adjacency matrix A(l+1) through

A(l+1) = ρl

(
H

(l)
local

)
= σl

(
M (l)αl

(
H

(l)
local

)
M (l)>

)
, (6)

where M (l) ∈ Rn×n is the weight matrix that produces
a symmetric adjacency, αl is a transformation that mixes
global and local information within the graph, and ·> de-
notes the transposition operator.

We broadcast the local information to all the nodes by as-
suming that all the nodes are connected, i.e., the adjacency
on the graph would beA(l)=1, and then using a convolution
operation. We define the global context as

H
(l)
global = γl

(
H

(l)
local

)
= σl

(
H

(l)
localZ

(l)
)
, (7)

where Z(l) ∈ Rdl+1×dl+1 is the learnable weight matrix.
This operation is similar to attention mechanisms previously
used (Bai et al., 2019), yet, we use it as a broadcasting
mechanism instead.

Finally, we merge both local (5) and global (7) contexts
using a transformation function

αl

(
H

(l)
local

)
= H

(l)
localQ

(l)γl

(
H

(l)
local

)>
, (8)

whereQ(l)∈Rdl+1×dl+1 is the learnable weight matrix. The
intuition is that nodes similar to the global and local context
should receive higher attention weights for the projection of
a new adjacency graph within the graph creation (6).

In other words, the ρl function broadcasts the information
of the nodes’ neighborhoods (as determined by the adja-
cency on the previous step, A(l), and embedded in the local
context), and, at each edge, creates a score of the possible
adjacency as a linear combination of the nodes’ features
restricted to the existing structure.

3. Learning Framework
We are assuming that we have a family of undirected graphs,
G={Gi}i, that have a particular structure pattern that we are
interested in. We will use each of the graphs, Gi = (Vi,Ai),
to learn the parameters, Θ, of our model that minimize
the loss function (12) on each of them. The structure of
each graph is used as ground truth, A∗i = Ai. The graph
is predicted by the set of node embeddings, λl (5), and
the adjacency prediction, ρl (6), functions that depend on
the weight matrices (i.e., Θ) that are learnable, defined in
Section 2.

Our input comprises the vertices, H(0) = Vi, and some
structure for training. In our experiments, we used the
identity, A(0) = I . However, other structures can be used as
well. In the following, we describe our learning framework
to obtain the parameters θl ∈ Θ of our functions for every l.
For brevity, we will omit the parameters on the losses and
in their functions.

Given the combinations of pairs of vertices on a graph,
the total number of pairs with an edge (positive class) is,
commonly, fewer than pairs without an edge (negative class).
In order to handle the imbalance between the two binary
classes (edge, no edge), we used the HED-loss function (Xie
& Tu, 2015) that is a class-balanced cross-entropy function.
Then we consider the edge-class objective function as

Lc =−β
∑
i∈Y+

logP (Ao
i )− (1−β)

∑
j∈Y−

logP
(
Ao

j

)
, (9)

where Ao
i is the indexed predicted edge (output) for the

ith pair of vertices. The proportion of positive (edge) and
negative (no edge) pairs of vertices on the A∗ graph are
β = |Y+|/|Y | and 1− β = |Y−|/|Y |, where Y = Y+ ∪ Y−.
And P (·) is the probability of a pair of vertices to have an
edge, predicted at the last layer L, such that

P (Ao
i ) = A

(L)
i . (10)

Individually penalizing the (class) prediction of each edge
is not enough to model the structure of the graph. Hence,
we compare the whole structure of the predicted graph, Ao,
with its ground truth, A∗. By treating the edges on the
adjacency matrices as regions on an image, we maximize
the intersection-over-union (Milletari et al., 2016) of the
structural regions. Then we consider the objective function,

Ls=1− 2|Ao ∩A∗|
|Ao|2 + |A∗|2

=1−
2
∑
i,j

Ao
i,jA

∗
i,j∑

i,j

(Ao
i,j)

2 +
∑
i,j

(A∗i,j)
2
. (11)

Finally, we aim to minimize the total loss that is the sum of
all of the previous ones, defined by

L = ψ1Lc + ψ2Ls , (12)

where ψ1 and ψ2 are hyper-parameters that define the con-
tribution of each loss to the learning process.

4. Results and Discussion
In this work, we evaluate our model as an edge classifier, and
simulate its performance as a graph generator by inputting
noise as features and predicting on them. We perform ex-
periments on three synthetic datasets that consist of images
with Geometric Figures for segmentation, 3D surface func-
tion, and Community dataset (see Appendices A.1, A.2,
and A.3, respectively). For our experiments, we used 80%
of the graphs in each dataset for training, and test on the rest.
Our evaluation metric is the Maximum Mean Discrepancy
(MMD) measure (You et al., 2018), which measures the
Wasserstein distance over three statistics of the graphs: de-
gree (Deg), clustering coefficients (Clus), and orbits (Orb).

We report our results contrasted against existing methods
on Table 1. Additionally, we show more experiments us-
ing accuracy (Acc), intersection-over-union (IoU), and dice
coefficient (Dice) in Appendix C.
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Table 1. Comparison of GLN against deep generative models, GraphRNN (G.RNN), Kronecker (Kron.), and MMSB, on the Community
(C = 2 and C = 4), on all sequences of Surf100 and Surf400, and Geometric Figures datasets. The evaluation metric is MMD for
degree (D), cluster (C), and orbits (O) shown row-wise per method, where smaller numbers denote better performance.

C2 C4 Surf400 Surf100 Geo
T EP S E EH O A T EP S E EH O A

G
L

N D 0.0121 0.0022 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0016 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0005 0.0062
C 0.0098 0.0026 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0006 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 0.0002
O 0.6248 0.9952 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0053

G
.R

N
N D 0.0027 0.2843 0.0287 0.0232 0.0303 0.0286 0.0436 0.0155 0.0388 0.0478 0.0506 0.1845 0.0664 0.0321 0.0880 0.0628 0.0023

C 0.0052 0.2272 1.6302 1.6690 1.7358 1.8362 1.8313 1.8057 1.7734 1.8271 1.0961 1.5689 1.7155 1.8379 1.9252 1.8962 0.0001
O 0.0033 1.9987 1.3684 1.3304 1.7337 1.5440 1.6709 1.5646 1.4736 0.4124 0.3705 0.8566 0.7786 0.9005 0.5702 1.5494 0.0015

K
ro

n. D 1.0295 1.3741 0.9231 0.8922 0.9301 0.8873 0.8890 0.8987 0.9028 0.7361 0.8012 0.7279 0.7453 0.6382 0.8655 0.8515 0.5817
C 1.2837 1.3962 1.7836 1.7955 1.8163 1.8791 1.8814 1.8123 1.8945 1.9098 1.7722 1.7869 1.8981 1.9020 1.9297 1.9063 0.3815
O 1.1846 1.3283 1.5621 1.5875 1.7834 1.6223 1.7027 1.6928 1.6338 0.4299 0.6013 0.5674 0.5655 0.6731 0.5827 1.3719 0.5052

M
M

SB D 1.7610 1.7457 1.1160 1.0256 1.1054 1.0513 1.0628 1.0589 1.0435 1.0124 1.0122 0.9940 1.0583 0.9334 1.1648 0.9825 0.6163
C 1.8817 1.9876 1.9987 1.9916 1.9985 1.9959 1.9975 1.9969 1.9951 1.9526 1.9417 1.9642 1.9744 1.9489 1.9332 1.9369 0.2855
O 1.4524 1.5095 1.7501 1.7851 1.8254 1.7863 1.7606 1.7480 1.7286 0.4303 0.7118 0.2466 0.6605 0.1209 0.7368 1.1789 0.6066
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Figure 2. Results of the dissimilarity (MMD) between the predic-
tion and ground truth (smaller values are better) while varying the
number of recurrent steps, on the 3D Surface dataset (Surf400).

Table 2. Ablation of GLN using Geometric Figures. Note, in the
first three metrics, high values are better, and opposite in the rest.

Losses Metrics

IoU HED Reg Acc↑ IoU↑ Dice↑ Deg↓ Clus↓ Orb↓
– X – 0.999 69 0.974 66 0.987 17 0.006 77 0.001 11 0.106 86
– X X 0.999 70 0.974 89 0.987 25 0.006 48 0.001 02 0.097 24
X – – 0.799 68 0.052 40 0.099 59 1.862 43 1.998 03 0.982 72
X – X 0.893 78 0.095 27 0.173 96 1.768 95 1.949 12 1.186 16
X X – 0.999 70 0.974 90 0.987 23 0.006 27 0.000 19 0.061 87
X X X 0.999 70 0.974 89 0.987 25 0.006 22 0.000 19 0.005 32

Knowing the depth of the recursive model (i.e., the number
of iterations) is not a trivial task since we must find a trade-
off between the efficiency and effectiveness of the model.
In Fig. 2, we show the dissimilarity metrics (MMD) while
varying the number of applications of our proposed block
on the 3D Surface dataset. According to our experiment,
using five recurrent steps provides the right trade-off.

Additionally, in Table 2, we present an ablation analysis of
our model’s loss functions and regularization components
on the Geometric Figures dataset. We emphasize a stable
training and a fast convergence when we minimize both loss
functions simultaneously.

Finally, we examined the robustness to structural inputs by
randomly changing the proportion of the initial connections
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Figure 3. MMD metrics on GLN when varying the input struc-
ture on Community C = 4 (left) and C = 2 (right). The input
corresponds to an adjacency matrix with different proportions of
connections.

(i.e., 10%, 20%, . . . , 100%) in our input A(0). Fig. 3 shows
the average results (of five executions) of this experiment
on the Community (C = 2, and C = 4). We obtained mini-
mum variation on the prediction capabilities of the network.
Hence, the best option is to select a minimal graph as input,
i.e., the identity matrix. We present our models’ qualitative
results on the different databases in Appendices D, E, and F.

5. Conclusions
We proposed a simple yet effective method to predict the
structure of a set of vertices. Our method works by learning
node embedding and adjacency prediction functions and
chaining them. This process produces expected embeddings
which are used to obtain the most probable adjacency. We
encode this process into the neural network architecture.
Our experiments demonstrate the prediction capabilities of
our model on three databases with structures with different
features (the communities are densely connected on some
parts, and sparse on others, while the images are connected
with at most four neighbors). Further experiments are nec-
essary to evaluate the robustness of the proposed method
on larger graphs, with more features and more challenging
structures.
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SUPPLEMENTARY MATERIAL

A. Datasets
A.1. Geometric Figures Dataset

We made the Geometric Figures dataset for the task of image
segmentation within a controlled environment. Segmenta-
tion is given by the connected components of the graph
ground-truth. Here, we provide RGB images and their ex-
pected segmentations.

The Geometric Figures dataset contains 3000 images of size
n×n, that are generated procedurally.1 Each image contains
circles, rectangles, and lines (dividing the image into two
parts). We also add white noise to the color intensity of the
images to perturb and mixed their regions.

The geometrical figures are of different dimensions, within
[1, n], and positioned randomly on the image (taking care
in maintaining the geometric figure). There is no specific
color for each geometric shape and their background.

For our experiments we use a version of dimension n = 20.

A.2. 3D Surfaces Dataset

To evaluate our method we needed a highly structured
dataset with intricate relations and with easily understand-
able features. Hence, we convert parts of 3D surfaces into a
mesh by sampling them. Each point in the mesh is translated
into a node of the graph, with its position as a feature vector.
We have a generator2 that creates different configurations
for this dataset based on a number of nodes per surface, and
transformation on it.

We considered the following surfaces:

• Ellipsoid: defined by the 3D-function x2

a2 + y2

b2 + z2

c2 =1,
where the semi-axes are of lengths a, b, and c.

• Elliptic hyperboloid: defined by the 3D-function x2

a2 +
y2

b2 −
z2

c2 = 1, where the semi-axes are of lengths a, b,
and c.

• Elliptic paraboloid: defined by the 3D-function x2

a2 +

1Code available at https://gitlab.com/mipl/
graph-learning-network.

2Code available at https://gitlab.com/mipl/
graph-learning-network.

y2

b2 = z, where a and b are the level of curvature in the
xz and yz planes respectively.

• Saddle: defined by the 3D-function x2

a2 − y2

b2 = z,
where a and b are the level of curvature in the xz and
yz planes respectively.

• Torus: defined by the 3D-function(√
x2 + y2 −R

)2
+ z2 = r2, where R is the

major radius and r is the minor radius.

• Another: defined by the 3D-function
h sin(

√
x2 + y2) = z, where h is the height

above z-axis.

We generated 200 versions of each surface by randomly
applying a set of transformations (from scaling, translation,
rotation, reflection, or shearing) to the curve, moreover, two
versions of the Surface dataset were created, Surf100 and
Surf400 that use 100 and 400 vertices per surface, respec-
tively.

A.3. Community Dataset

We perform experiments on a synthetic dataset (Community
dataset) that comprises two sets with C = 2 and C = 4
communities with 40 and 80 vertices each, respectively,
created with the caveman algorithm (Watts, 1999), where
each community has 20 people. Besides, Community C = 4
and C = 2 have 500 and 300 samples respectively.

B. Architecture
For our experiments, we used 80% of the graphs in each
dataset for training, and test on the rest. For both models,
we use the following settings. Our activation functions, σl,
are sigmoid for all layers, except for the Eq. 7 where σl is
a hyperbolic tangent. We use L = 5 layers to extract the
final adjacency and embeddings. The feature dimension,
dl, is 32 for all layers. The learning rate is set 10−5 for the
Community dataset, and in the rest of datasets, the learning
rate is set 5× 10−6. Additionally, the number of epochs
changes depending on the experiment. Thus in the experi-
ments of Communities, Surfaces and Geometrical Figures
we use 150, 200 and 150 times respectively and, the number

https://gitlab.com/mipl/graph-learning-network
https://gitlab.com/mipl/graph-learning-network
https://gitlab.com/mipl/graph-learning-network
https://gitlab.com/mipl/graph-learning-network
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of kernel using is k = 3. To convert the prediction of the
adjacency into a binary edge, we use a fixed threshold of
ε = 0.5. The hyper-parameters in our loss function (12) are
ψ1 = 1 and ψ2 = 1. In our experiments, we did not needed
the regularization our GLN model. Finally, for training, we
used the ADAM optimization algorithm on Nvidia GTX
Titan X GPU with 12 GB of memory.

C. More Measure of Prediction
Unlike Table 1, where dissimilarity measures are used, such
as our metric evaluation on graphs, in Table C.1 we present
similarity measures such as accuracy (Acc), intersection-
over-union (IoU), Recall (Rec), and Precision (Prec).

D. Prediction of 3D Surface
In Fig. D.1, we show the qualitative result of GLN for the
3D Surface dataset. We show the prediction on the elliptic
hyperboloid, elliptic paraboloid, torus, saddle, and ellipsoid,
all using 100 nodes (Surf100). We normalized the graphs
(w.r.t. scale and translation) for better visualization. Besides,
the red edges represent false negatives (i.e., not predicted
edges) and black edges are correctly predicted ones.

E. Prediction of Community
In Fig. E.1, we predict the adjacency matrix the of Com-
munity dataset on two and four communities, C = 2 and
C = 4 respectively (even rows). Note, our node embedding
obtained after apply the λl function, shows a good grouping
of individuals in the hyperspace (odd rows). Furthermore,
the red edges represent false negatives (i.e., not predicted
edges), and black edges are correctly predicted ones.

F. Prediction of Geometric Image
Finally, in Fig. F.1, we present an application, even fun-
damental, on segmentation where each of the connected
components represents different objects. For this, we apply
our GLN model on Geometric Image dataset, using size im-
age of 20× 20. Besides, the white edges represent correct
predictions, and light blue dashed edges are false negatives
(i.e., not predicted edges).
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Figure D.1. Results on 3D Surface dataset predictions for the proposed methods, and the learned latent space, used for build adjacency
matrix in the prediction. The blue edges represent false negatives (i.e., not predicted edges), red edges represent false positives (i.e.,
additional predicted edges), and black edges are correctly predicted ones. The graphs were normalized (w.r.t. scale and translation) for
better visualization.



Graph Learning Network: A Structure Learning Algorithm
C

=4

x′ y′

z
′

x′ y′

z
′

x′ y′
z
′

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

C
=2

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

x′ y′

z
′

Figure E.1. Results on Community dataset predictions for the proposed methods, and the learned latent space, used for build adjacency
matrix in the prediction. The blue edges represent false negatives (i.e., not predicted edges), red edges represent false positives (i.e.,
additional predicted edges), and black edges are correctly predicted ones. The graphs were normalized (w.r.t. scale and translation) for
better visualization.

Figure F.1. Predicted graphs using GLN on images with geometric shape of 20× 20 pixels. The image behind the graph corresponds to
the input values at each node (RGB values), the white edges represent correct predictions, yellow dashed edges are false negatives (i.e.,
not predicted edges), and light blue dashed edges are false positives (i.e., additional predicted edges).
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Table C.1. Comparison of GLN, on the Community (C = 2 and C = 4), on all sequences of Surf100 and Surf400, and Geometric Figures
datasets. The evaluation metric are accuracy (Acc), intersection-over-union (IoU), Recall (Rec), and Precision (Prec) shown row-wise per
method, where larger numbers denote better performance.

C2 C4 Surf400 Surf100 Geo
T EP S E EH O A T EP S E EH O A

G
L

N Acc 0.997 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.993 0.999
IoU 0.993 0.992 0.991 0.982 0.999 0.981 0.989 0.999 0.865 0.999 0.999 0.999 0.999 0.999 0.999 0.877 0.974
Rec 0.994 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.928 0.999 0.999 0.999 0.999 0.999 0.999 0.934 0.986
Prec 0.997 0.997 0.991 0.982 0.999 0.981 0.989 0.999 0.927 0.999 0.999 0.999 0.999 0.999 0.999 0.934 0.976


