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Abstract
Graph representation learning for static graphs
is a well studied topic. Recently, a few studies
have focused on learning temporal information
in addition to the topology of a graph. Most
of these studies have relied on learning to rep-
resent nodes and substructures in dynamic graphs.
However, the representation learning problem for
entire graphs in a dynamic context is yet to be
addressed. In this paper, we propose an unsuper-
vised representation learning architecture for dy-
namic graphs, designed to learn both the topologi-
cal and temporal features of the graphs that evolve
over time. The approach consists of a sequence-
to-sequence encoder-decoder model embedded
with gated graph neural networks (GGNNs). The
GGNN is able to learn the topology of the graph
at each time step, while LSTMs are leveraged to
propagate the temporal information among the
time steps. We demonstrate the efficacy of our
approach by applying the obtained embeddings
to dynamic graph classification using a real world
dataset of animal behaviour.

1. Introduction
Dynamic graphs are a popular model for high level represen-
tation, characterization, and analysis of real world dynamic
interaction systems. Dynamic graphs are often defined as
time-ordered sequences of network snapshots (Holme &
Saramäki, 2012), and each network snapshot models the
interactions between the nodes over a unit interval of time.
Graph representation learning approaches gained signifi-
cant attention in downstream graph analysis applications
in recent years. Several studies focused on learning to rep-
resent nodes and edges in dynamic graphs (Wang et al.,
2017; Nguyen et al., 2018; Goyal et al., 2017). However,
these approaches are still far from the ultimate goal of cap-
turing both the topological and temporal features of entire
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time-varying graphs. Recently, remarkable achievements
have been made in representation learning of whole static
graphs (Taheri et al., 2018; Narayanan et al., 2016; Yanardag
& Vishwanathan, 2015; Adhikari et al., 2017), but a com-
prehensive fundamental framework for processing dynamic
graphs is still lacking. There are numerous differences be-
tween static and dynamic graphs that prevent direct transfer
of methods for embedding static graphs to a dynamic setting.
Many processes over dynamic graphs, such as information
diffusion for example, depend on the temporal dynamics
of these graphs, not just the topology of the connections.
Therefore, an ideal approach should be able to learn both
the topology and its temporal dynamics in order to represent
a dynamic graph.

We propose an unsupervised learning approach for dynamic
graph representation that combines the power of static graph
representation methods and the success of recurrent neural
networks in learning sequences of events through time. We
investigate the extension of sequence-2-sequence encoder-
decoder frameworks in learning to represent the tempo-
ral dynamics of a graph. We modify the encoder-decoder
paradigm to propose a dynamic graph autoencoder by en-
forcing the decoder to reconstruct the dynamics of a graph,
which have been observed by the encoder. We leverage the
gated graph neural networks (GGNNs) (Li et al., 2016b)
potential for learning the topology of the graph. GGNNs
are embedded in a recurrent encoder to preserve the topol-
ogy of a dynamic graph at each time step. In addition, a
temporal information propagation module is incorporated to
propagate the temporal information across nodes between
consecutive time steps. Finally, an autoregressive decoder
is leveraged to reconstruct the history of the graph evolution
from the last encoder’s hidden state.

We investigate whether the obtained representations from
the dynamic graph autoencoder are generalized and suffi-
ciently informative to be transferred to other downstream
tasks, such as dynamic graph classification. To the best
of our knowledge, this paper presents the first approach in
learning to represent the entire graph in a dynamic setting.
We demonstrate the efficacy of our approach in a dynamic
classification task using the real-world dataset of animal
behaviour. We provide several baselines to demonstrate the
efficacy of our approach in the classification task and present
quantitative analysis to indicate the impact of considering
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dynamics in our representation learning method.

2. Related Work
Recently, there has been a burst of methods for embedding
nodes, subgraphs and even the entire graph (Narayanan
et al., 2017; Taheri et al., 2018; Zhang et al., 2018; Lee
et al., 2018) in a static setting into low-dimensional spaces.
However, in this paper, we only focus on the related work
for representation learning of graphs in a dynamic setting.

Lately, there have been a few studies on representation
learning for dynamic graphs. The majority of these stud-
ies focused on representation learning for individual nodes
within the dynamic graphs. Nguyen et al. (Nguyen et al.,
2018) suggested using temporal random walks and the skip-
gram model for learning node embeddings. Also, Du et
al. (Du et al., 2018) proposed an extension of the skip-
gram model in a dynamic setting to learn the represen-
tation of new nodes and adjust the old ones. Trivedi et
al. (Trivedi et al., 2017) presented an architecture, Know-
Evolve, for node representation learning in a temporal
knowledge graph using recurrent neural networks and tem-
poral point processes. DyRep (Trivedi et al., 2019) extended
Know-Evolve with a two-time scale process that captures
temporal node interactions in addition to the topological
evolution. DyGEM (Goyal et al., 2017) incrementally com-
putes node representations by initializing an autoencoder
from the previous step. Goyal et al. (Goyal et al., 2018)
extended DyGEM by adding recurrent neural autoencoders
in order to capture more accurate temporal information of
node embeddings. DynamicTriad (Zhou et al., 2018) im-
posed triad to learn the node embeddings while preserving
the temporal information. Chen et al. (Chen et al., 2018)
modified LSTMs in order to process dynamic networks and
predict the upcoming links in the future. Wang et al. (Wang
et al., 2018) introduced a small-scale method for represen-
tation learning of a series of transition graphs in the area
of driving analysis. The approach is tuned for processing
small-size graphs with a fixed number of nine nodes, and
the entire adjacency matrix of the graph is flattened to a
vector and used as the initial representation of the graph
and input of the system. However, this approach does not
scale to processing large-size, sparse, and variable number
of nodes through time. In contrast, our approach focuses on
the entire graph representation learning and preserves both
topological and temporal properties of a graph.

3. Problem Definition
Dynamic graph: a dynamic graph is an ordered sequence
of T graph snapshots: G = 〈G1, G2, . . . , GT 〉. Graph
Gt = (Vt, Et) models the state of a dynamic system at the
interval [t, t+∆t], for some fixed ∆t. The dynamic graphG

may have a subset of nodes from the set V at each time step,
Vt ⊂ V . Each node v ∈ Vt takes a unique identification
value from 1, . . . , |V |, and edge etkj ∈ Et is a pair of nodes
(k, j) ∈ {Et : Vt × Vt} and represents an edge at time step
t.

Gt is represented by an adjacency matrix At ∈ Rn×n,
where n is the number of nodes and where entry atkj = 1 if
there is an edge between nodes k and j at time step t, and
atkj = 0 otherwise.

Graph history: A sequence of graph snapshots which has
been seen before time step t is called the history of Gt. We
refer to the evolution history of a graph in the past w time
steps by HGt = 〈Gt−w, Gt−w+1, Gt−w+2, . . . , Gt−1〉.

Graph embedding: Given the HGt
, we seek to learn a

mapping function that embeds a graph Gt into Rd for some
d ∈ Z. The goal is to learn graph embeddings such that
graphs with similar topological structure and temporal dy-
namics are close to one another in the embedding space. We
focus on processing undirected graphs in this work, but it is
trivial to extend our models to directed graphs.

4. Dynamic Graph Autoencoder
We investigate whether sequence-to-sequence encoder-
decoder frameworks are capable of learning to represent a
dynamic graph and capture the graph evolution through time.
We leverage the GGNN’s ability to capture the topology of
a graph and couple it with the LSTM encoder-decoder archi-
tecture to capture the dynamics of the graph in order to cre-
ate a dynamic network representation learning framework.
We refer to this model as Dynamic Graph AutoEncoder,
DyGrAE. The model is depicted in Figure 1.

GGNN: At first, the GGNN builds a graph representation
for Gt by considering its topological structure at time step
t. Let A denote the input adjacency matrix of a graph and
we will use Av to denote row v of that matrix. Let xv ∈ Rk

denote the initial embedding (node representation) of a node
v, which is a draw from a uniform distribution. We use nvi
to indicate the hidden state of a node v at iteration i. With
this notation, we have the following propagation model. We
initialize the hidden states of each node nv0 at the beginning
as follows: nv0 = xv (1)

Each propagation step passes information from the neigh-
bors of a node v to learn its embedding avi at propagation
step i:

avi = Av:[n
1
i−1 . . . n

|V |
i−1] + b (2)

where b is a bias. Note that after several iterations of this
step the information is passed among all the reachable nodes
to learn the embedding of each node.

The remaining equations are the update (Equation 3) and
reset (Equation 4) gates of the GRU. The matrices W,U are



Submission and Formatting Instructions for ICML LRG Workshop 2019

Figure 1. DyGrAE: Dynamic graph autoencoder

the parameter matrices for the GRU. The final embedding
nvi of a node v at step i is given by Equation 6:

Update: zvi = σ(W zavi + Uznvi−1) (3)
Reset: rvi = σ(W ravi + Urnvi−1) (4)

ñvi = tanh(Wavi + U(rvi � nvi−1)) (5)
Node state: nvi = (1− zvi )� nvi−1 + zvi � ñvi (6)

After M steps of message propagation in Gt, we use an
average pooling of the nodes’ hidden states (Equation 6) as
the representation of the entire Gt:

EmbGGNN (Gt) = Avg(nvM )

Temporal message propagation: We address the dynamic
connectivity and reachability among nodes across different
time steps in our model. Nicosia et al. (Nicosia et al., 2012)
described the connectivity in dynamic graphs using the con-
cepts of reachability and temporal (or time-respecting) paths.
They also discussed that connectedness plays a significant
role in temporal dynamics of a graph. A temporal path is
a sequence of edges: L = 〈el1ij , el2jk, · · · , elnmn〉, with an in-
creasing order of times l1 ≤ l2 ≤ · · · ln assigned to edges
and where each node is visited exactly once. Node u is di-
rectly reachable from node v at time step t if there exists an
edge uv at timestep t, i.e., atvu = 1. Node u is temporally
reachable from node v if there is a temporal path from v to
u. Temporal path generation cannot be addressed solely by
the GGNNs since the message propagation process exists
separately at each time step and there may be no connection
among nodes across sequential time steps.

Our approach propagates messages not only in the topology
of the graph at each time step, but also during a temporal
window of graph evolution. To do so, we add a temporal
message propagation module to the model using a recurrent
neural network. LSTM tmp is incorporated to propagate the
temporal information among the nodes through consecutive

time steps. At each time step nodes’ hidden states are ini-
tialized using the hidden states obtained by last iteration of
the GGNN from previous time steps:

NodesInit(Gt) = LSTM tmp(GGNN t−1, h
tmp
t−1 )

GGNN t−1 = {nvM (t− 1)|v ∈ V } (7)

Here nvM is obtained by Equation 6. Information on a tem-
poral path can be captured by LSTM tmp , since nv0(t) is
initialized considering the nvM (t − 1), which is obtained
by message propagation on the graph topology at time step
t − 1. Therefore, node v at time step t is able to receive
messages from all other connected nodes through a temporal
path.

Temporal encoder: Given the embedding of the graph
EmbGGNN (Gt) and its history HGt

, we use an LSTM
encoder to project Gt into a hidden representation that
takes the graph dynamics into account. The LSTM encoder,
LSTMenc, passes the information of the dynamic graph
G over an observation window of size w and computes the
dynamic embedding Gt using knowledge about the graph
topology from the past w time steps:

henct = LSTM enc(EmbGGNN (Gt), h
enc
t−1) (8)

We refer to henct as the dynamic embedding of the graph,
Embdy(Gt).

Temporal decoder: The main goal of the decoder,
LSTM dec , is to reconstruct the history of the graph HGt

in
the observed window with size w. The decoder is an autore-
gressive model and reconstructs the topology of the graph at
time step t given the decoded graphs at previous time steps.
The decoder uses hencw to initialize its first hidden state. The
set of edges of the graph is the output of the decoder at each
time step.

hdect = LSTM dec(A
t−1

, hdect−1) (9)

We use a sigmoid transformation σ to reconstruct the ad-
jacency matrix at time step t − 1 (here W are the learned
parameters and b is a bias):

A
t−1

= σ(hdect−1 ∗W + b) (10)

Objective function: Let O be a set of temporal windows
where each window o ∈ O has a length of w. The parameter
space of the models includes parameters related to GGNN ,
LSTM enc , LSTM dec , LSTM tmp , W ∈ R|hdec |×|V |2 and
b ∈ R|V |2 . We use a cross entropy loss function to train our
model:

LossCE =

−
∑
o∈O

w∑
t=1

|V |∑
i=1

|V |∑
j=1

At
ij log(A

t

ij)) + (1−At
ij) log(1−At

ij)

(11)
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5. Experiments
In this section, we evaluate our dynamic representation
learning approach using proposed models. We use the
learned representation for a dynamic graph classification
task. At each time step t, the graph Gt has a class label l
from the set L. Our unsupervised learned representations
for Gt are used in the classification task.

Baselines

We compare our results with several baselines. Li et al. (Li
et al., 2016a) proposed an Adversarial Sequence Tagging
(AST) to perform activity labeling classification. Amorn-
bunchornvej et al. (Amornbunchornvej et al., 2018) used dy-
namic graph features at each time step to predict the activity
label using linear discriminant analysis (LDA). We also com-
pare with two other baselines that learn static graph repre-
sentations. Taheri et al. (Taheri et al., 2018) proposed an un-
supervised sequence-to-sequence (S2S) approach for static
graph representation learning. Moreover, we use a super-
vised GGNN classifier as a baseline to classify Gt. We also
compare our models with some of the temporal node embed-
ding approaches, mentioned in Section 2: DynGEM(Goyal
et al., 2017), DyAE, DyAE, DyRNN and DyAERNN from
dynamic2vec framework(Goyal et al., 2018) .

Dataset

We used the dataset of dynamic graphs of a troop of GPS-
tracked baboons living in the wild in Mpala Research Cen-
tre, Kenya (Strandburg-Peshkin et al., 2015; Crofoot et al.,
2015). Due to the availability of the behavior labels provided
by biologists, we used a subset of 2 days (out of 28 days)
of 16 adult and sub-adult members of the troop that were
fitted with GPS collars, collecting data points at 1Hz for
12 hours (6am to 6pm). Amornbunchornvej et al. (Amorn-
bunchornvej et al., 2018) constructed dynamic graphs of the
individuals and performed the activity classification task.
The dynamic graph of the first day has 23259 time steps and
the second day has 19098 time steps. There are four group
level activities in the baboon dataset: sleeping, hanging-out,
coordinated non-progression, and coordinated progression.
One of the four labels is assigned to the dynamic graph at
each time step by the domain experts. We report two results,
following the configuration baselines in (Amornbunchorn-
vej et al., 2018; Li et al., 2016a): using the labeled first day
of data to classify the second days activities (Baboon (day
1)); and using the second days labeled data to classify the
first days activities (Baboon (day 2)).

Hyperparameters

The GGNN uses four iterations of message passing at each
time step. The dimensionality of the GRU and LSTMs is
fixed to 100. The Adam optimizer is used for minibatch
training. We set the learning rate to be 0.001 and dropout

Method Baboon Day 1 Baboon Day 2
AST 77.30 69.22
LDA 87.20 70.82

GGNN 84.58 81.38
S2S 84.66 83.87

DyGEM 57.09 47.36
DyAE 80.28 72.21

DyRNN 63.21 52.9
DyAERNN 62.73 52.0

DyGrAE 88.83 87.54

Table 1. Classification accuracy
of the first two days of baboon
data

Figure 2. The effect of window
size and batch size on accuracy

rate to 0.5. Figure 2 indicates the effect of window size and
batch size on the classification performance. It shows that
the best accuracy is obtained by larger window and batch
sizes, which means that longer-term dynamics matter for
this task. Having larger window sizes causes an explicit
larger context for representation learning during backprop-
agation, and having larger batch sizes causes an implicit
larger context through time. Figure 2 shows that we obtain
the best results with window sizes larger than 50 and the
batch size larger than 50, which we used in the rest of our
experiments.

Results

We used a C-SVM classifier from LIBSVM with a radial
basis kernel for multi-class classification. The data of one
day is used for training and tuning the regularization and
kernel hyperparameters of the SVM via cross-validation
and the other day is used for testing. We compare our pro-
posed models with other baselines in Table 1. We exceed
all other baselines and the comparison with static graph
approaches (GGNN and S2S) shows that dynamics mat-
ter and incorporating temporal information in embedding
methods improves graph representations. Moreover, the re-
sults demonstrate that temporal node embedding approaches
(DyGEM, DyAE, DyRNN and DyAERNN) do not necessar-
ily contribute to informative representations of the whole
graph at each time step. We speculate that the inefficiency
of these approaches originates from the fact that these au-
toencoders are trained to reconstruct a node and its incident
edges (the node’s corresponding row in adjacency matrix),
not the whole topology of the graph.

6. Conclusions
We proposed an efficient approach for representation learn-
ing of entire graphs in a dynamic setting. We evaluated
our approach on a real-world dataset of animal behaviour
and show that our model achieves significantly better per-
formance compared to the state-of-the-art models that learn
the graph representation in a static setting. The promising
results indicate that our approach can be used as the basis
for dynamic graph analysis.
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