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Abstract
Graph Neural Networks (GNNs) are an architec-
ture naturally suited to graph structured data. In
this work, we consider datasets without an explic-
itly defined graph, but which contain some im-
plicit relational structure. To apply GNNs to such
data one must first construct a graph. We propose
Graph Learning Networks (GLNs), which extend
the GNN architecture by learning task-specific
graphs, and consider the generic problem of as-
signing unique labels to each point of a point-set.
We apply GLNs to labelling the cell nuclei of C.
elegans nematodes from their 3D positions, and
show how this outperforms previous approaches.
Furthermore, we conduct experiments that show
that graph learning in GLN is key to solving hard
synthetic labelling problems with an implicit and
non-trivial relational structure.

1. Introduction
Convolutional neural networks (CNNs) have had great suc-
cesses in computer vision. How to extend these results
beyond image data remains an open question. One approach
is to create new deep neural networks for data structures
of interest such as graphs, sets, and point clouds (Battaglia
et al., 2018; Zaheer et al., 2017; Qi et al., 2017b).

Graph and set learning problems have primarily been consid-
ered separately from each other, however many of the issues
with developing deep learning models for graphs are also
present for sets. For example, neural networks operating on
either must be invariant to the order with which set elements
are provided to the network. Moreover, sets will sometimes
have a useful underlying graph structure, suggesting that a
connection between graph and set learning may be helpful.

Graph Neural Networks (GNNs) (Battaglia et al., 2018;
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Hamilton et al., 2017; Kipf & Welling, 2016; Xu et al., 2018)
are a powerful model capable of exploiting known graph
structures to learn useful vector representations of nodes.
Most GNN approaches make use of a message passing pro-
cedure (Gilmer et al., 2017), which involves progressively
propagating and aggregating information along the graph.
These graph structures however must be explicitly given
as input to GNNs. Such a graph structure is not a priori
available for common data types, including 3D point-sets
in which an underlying relational structure (e.g., distances
between points) is present, but is not explicitly given.

In order to apply GNNs to problems without pre-specified
graphs, we propose Graph Learning Networks (GLNs).
GLNs extend GNNs by learning an ensemble of graphs
describing implicit relationships. This graph generating pro-
cess is trained end-to-end together with a standard GNN.
Our design is motivated by a problem in biological mi-
croscopy where every point of 3D point cloud representing
cells needs to labelled with its unique identity. Existing au-
tomatic approaches are limited to a restricted subset of cells
(Long et al., 2009; Kainmueller et al., 2014). Applying deep
learning to this problem represents a major leap forward.

This data-source is challenging because it is not possible
to identify nuclei based solely on their individual features.
Rather, trained biologists recognize known constellations
of cells. Our goal is to emulate this capability and learn to
generate the needed constellations (represented as graphs).

In summary, the key contributions of this paper are:

1. we introduce the problem of applying GNNs to set data
and propose a generic method for learning to generate
graphs jointly with the GNN operating on them and,

2. we demonstrate this approach on a real biological
dataset of scientific interest where there is no a priori
graph structure. We find that our method significantly
outperforms the current state of the art.

2. Related Works
2.1. Set Learning

Previous work has been done on learning with sets with-
out the explicit relational model of GLNs. Instead, these
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methods focus on building universal set function approxima-
tors (Zaheer et al., 2017) or adapting existing deep learning
methods, such as RNNs to parse sets (Vinyals et al., 2015).
PointNet and its successor, PointNet++, exploit some of the
specific structures commonly found in very dense point-sets
(Qi et al., 2017a;b). These approaches do not explicitly
model relational structure, making them very general, but
also not well suited to problems based on local relations as
opposed to global properties.

2.2. Graph Neural Networks

Currently, Graph Neural Networks are the state of the art for
deep learning on graphs (Battaglia et al., 2018). We build
GLNs off the message passing approaches of (Hamilton
et al., 2017; Xu et al., 2018) that produce node embeddings
over T rounds. During every round, we aggregate infor-
mation from the neighborhood of each node using a set
function (e.g. mean, sum). This produces a vector called
the message. Each node’s vector is then modified by an up-
date function (e.g. concatenation of message and previous
embedding). After the T rounds, a task-specific readout
function predicts a node attribute based on the vectors in the
final round. Many variants exist and are explored in (Gilmer
et al., 2017; Battaglia et al., 2018).

2.3. Learning a Graph

An important extension to the above framework is that of
Graph Attention Networks (GATs) which bring attention
mechanisms to Graph Neural Networks (Veličković et al.,
2018). Our work contributes to this discussion by proposing
a general view that uses attention mechanism-like proce-
dures to build a graph without using specific hand derived
features or fixed kernels (Zhang & Rabbat, 2018).

Neural Relational Inference (Kipf et al., 2018) learns a la-
tent graph structure via use of a Variational Autoencoder
(VAE) (Kingma & Welling, 2013) where the latent variables
identify whether an edge connects a pair of nodes. This
latent structure is then decoded by a Graph Neural Network.
This work is a major step toward learning a task specific
graph. However, the use of a VAE results in training difficul-
ties which our approach avoids by using a relatively simple
graph generator. Other generative models over graphs have
been studied as well (You et al., 2018; Simonovsky & Ko-
modakis, 2018; Johnson, 2017; Li et al., 2018). Generative
methods offer an alternative to attention mechanisms as a
method of producing graphs, but currently these methods
suffer from scaling issues, strong assumptions on the train-
ing data available, or have complex training procedures.
Nonetheless, they represent an important direction for fu-
ture work. Another interesting direction of research is the
application of transfer learning to producing a graph, which
in then used in multiple tasks (Yang et al., 2018).

3. Our Approach
We consider the problem of labelling or classifying each
point of a point-set. Importantly, we consider a class of
hard problems for which these feature vectors considered
one-by-one are not sufficient for labeling. Instead, labelling
of a node requires considering other nodes, their feature
vectors, and their relationships.

Our model consists of two phases, see Fig. 1. First, a graph
generator takes the point-set and generates a graph. Sec-
ond, this graph is given as input to a round of message
passing (Gilmer et al., 2017). This process is then repeated
for T rounds, with each round relying on a distinct graph
generator.

3.1. Learning to generate a weighted graph

Suppose that for a given message passing round t ∈ [0, T −
1] we are given a vector embedding ht

i ∈ RD for each node
i, where D is a hyperparameter.

We generate a graph for our input point set by learning
edge weights αt

ij from the node features ht
i and ht

j via an
adjacency matrix generator φ:

αt
ij = φ(ht

i,h
t
j) (1)

We propose using the inner product between the feature vec-
tors embedded in a higher dimensional space as φ, although
we test other variants. Formally, we have:

φ(ht
i,h

t
j) = 〈f t(ht

i), f
t(ht

j)〉 (2)

where f t : RD → RE is a multi-layer perceptron (MLPs)
with leaky RELU activation, and 〈 , 〉 is the Euclidean inner
product on RE , with E a hyperparmeter. We normalize
these αt

ij by applying a softmax over all j. In reference to
this form being known as Inner Product Similarity (Okuno
et al., 2018), we call our architecture GLN-IPS-SG.

3.2. Message Passing with a Learned Graph

Once we have computed an adjacency matrix [αt
ij ] for a

given round t, we are able to apply any one of several stan-
dard Graph Neural Network architectures that require a
graph as input. We find that a GNN built by combining
ideas from (Hamilton et al., 2017; Xu et al., 2018; Kipf
et al., 2018), as we describe next, performs best for our task.

Given a vector ht
i for node i at round t, message passing

across the graph is performed by computing ht+1
i as:

h̃t
i = rt(ht

i)

ηt
i =

N∑
j=1

αt
ijh̃

t
j (3)

ht+1
i = ht

i + st(ht
i + ηt

i), (4)
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Figure 1. Graph Learning Networks (GLN). We perform T rounds of graph synthesis and message passing on a set of vectors h0
i of

dimension N . Graph synthesis is done by applying adjacency matrix generator φ for every pair of feature vectors: φ(ht
i,h

t
j).

where rt, st : RD → RD are MLPs with ELU activation
(Clevert et al., 2015). We use a residual scheme (equation
4) instead of a direct assignment to update our embeddings
(Kipf et al., 2018; Xu et al., 2018).

Note that when we compute the updated embedding ht+1
i

for node i, vectors for other nodes j only appear in the
summation in equation 3. Since this summation is invari-
ant under permutation of indices, the produced vectors are
equivariant under reordering of the input set. We also con-
sider some alternative methods, mainly for ablation.

3.2.1. ADJACENCY MATRIX GENERATORS VARIANTS

We consider modifying equation 2 to:

φ(ht
i,h

t
j) = LeakyReLU(aT [Wtht

i,W
tht

j ]) (5)

With a,W learned. We term this variant GLN-GAT, re-
flecting the fact that this was the attention mechanism used
in Graph Attention Networks (Veličković et al., 2018). We
also consider 3 variants with no learned parameters to com-
pare against a naive, direct applications of GNNs to sets:

φ(ht
i,h

t
j) = 〈ht

i,h
t
j〉 (6)

Where 〈 , 〉 is the Euclidean inner product on RD. We term
this variant GNN-DOT because we are passing an adja-
cency matrix of dot products to a standard GNN architec-
ture. In a similar vein, we consider GNN-L2, where a GNN
operates on an adjacency matrix of the L2 distances:

φ(ht
i,h

t
j) = ||ht

i − ht
j ||2 (7)

Lastly, we consider a GNN-UNI variant which just assigns
every node the same uniform weight, that is:

φ(ht
i,h

t
j) = 1 (8)

GNN-UNI is actually a direct application of GNNs to sets
that encodes a belief that all nodes are equal and pass mes-

sages over a fully-connected graph. It corresponds to learn-
ing a representation of the set as a whole without acknowl-
edging substructure and thus falls into the category of set
learning methods discussed in section 2.

3.3. Readout layer

Finally, after T rounds of both graph generation and mes-
sage passing, we take the vector hT

i from the final round
of message passing apply a fully connected softmax-layer
that classifies each node. We train our network using the
Adam optimizer (Kingma & Ba, 2014) on cross entropy as
our loss function, calculated over every point in every set.

3.4. Multi-graph learning

Similar to (Veličković et al., 2018; Kipf et al., 2018) we
consider having K parallel weighted graphs instead of just
one per round. Instead of computing a single αt

ij for each
pair of nodes i, j, we compute K weights αt

ij,k, average the
messages over them, and update the embeddings as before
using equation 4. We denote the multi-graph version of our
method as GLN-IPS-MG. Formally:

αt
ij,k = 〈f tk(ht

i), f
t
k(h

t
j)〉

ηt
i =

1

K

K∑
k=1

N∑
j=1

αt
ij,kr

t
k(h

t
i)

4. Main Results
4.1. Problem statement

We apply GLNs to a point-set labelling problem arising
in C. elegans biology. We train each model on 180 worm
point clouds 5 times, use a validation set of 20 images to
select hyper-parameters, including early-stopping time, and
then test the best run on 200 previously unseen point clouds
divided into 10 sets of 20 and report the mean accuracy over
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Table 1. Mean performance summary of different approaches on
the C. elegans dataset. Standard deviation in parentheses. Each
model was trained 5 times and the best results were reported.

METHOD TEST ACCURACY

DEEPSET 47.4%(2.8)
POINTNET 77.2%(0.2)

GNN-L2 69.6%(3.0)
GNN-DOT 78.0%(1.9)
GNN-UNI 79.3%(1.7)

GLN-GAT 78.7%(1.6)

GLN-IPS-SG 83.7%(1.7)
GLN-IPS-MG (K = 2) 84.8%(1.4)
GLN-IPS-MG (K = 8) 82.1%(1.3)

these sets as well as standard deviation in table 1. This test-
ing procedure is motivated by the size of typical C. elegans
experiments and is meant to provide an estimate for what
level of performance a C. elegans researcher could expect
from applying our trained network to their problem. Our
results are summarized in table 1.

4.2. Contextualizing the Results

Table 1 shows several variants of GLN-IPS outperforming
state-of-the-art methods PointNet1 (Qi et al., 2017a) and
DeepSet (Zaheer et al., 2017). We believe this is due to the
explicit relational modeling our method has, a bias DeepSet
and PointNet as generic universal set function approxima-
tors do not have. This claim is substantiated by the fact that
our baseline methods which represent naive applications
of GNNs to sets without a graph learning stage get similar
performance to DeepSet and PointNet. We further explore
this claim with a synthetic example in section 5.

A direct comparison to leading approaches is difficult due to
these methods considering only a sub-problem defined on
357 out of the 558 nuclei present. Furthermore, since they
match to a manually constructed template, the number of
nuclei per point-set must be exactly the number of nuclei in
the template (Long et al., 2009; Kainmueller et al., 2014).
Despite tackling a larger problem, our approach achieves
accuracy levels on the whole problem only slightly lower
than the accuracies these template methods report on the
simpler sub-problem. Furthermore, these methods used
features specific to C. elegans whereas our deep learning
approach is application agnostic.

4.3. Interpreting the learned graphs

To better understand the learned graphs, we examine the top
8 strongest edges between a given cell and all other cells

1PointNet’s successor, PointNet++ (Qi et al., 2017b) is not
benchmarked against because its addition of sampling methods is
not applicable in our case.

Table 2. Comparison of a relational approach to a set-based ap-
proach as the number of data points increases. Each model was
trained 5 times and the best results were reported.

METHOD N = 16 N = 32 N = 48

DEEPSET 100.0% 60.0% 41.7%
GNN-UNI 86.3% 44.8% 30.2%
GLN-IPS 100.0% 99.4% 81.7%

in the adjacency matrix [αt
ij ] after the first round of graph

generation. Interestingly, we find connections to known
biology. For example, a similar set of 8 nuclei are the
strongest partners for nearly all other nuclei. Moreover,
these groups seem to cluster around the dense anterior part
of the worm, but also at the very tip of the worm’s tail. This
suggests that in this first round of graph generation, the GLN
uses different anchors to produce the first high-dimensional
embeddings. We also examine the distribution of errors
throughout the worm. Among the most misidentified nuclei
we find a series of nuclei from the hypodermal syncytium
and SABD – both regions are known to be highly complex
because of lineage variations and high cell density.

5. Additional Experiment
As DeepSet is a universal set function approximator, in
principle, GLN-IPS should offer no benefit. An important
question is whether GLN-IPS has a bias that allows it to
learn representations that generalize better in practice. We
design a node identification task (named Flip) to answer this
question affirmatively.

We consider N points {Pi} on a line with midpoint M .
Each node is given a unique label c that corresponds to
a unique distance to M . However, it is randomly flipped
about M in each example, meaning each node can be in two
different positions along the line. This gives a total of 2N

possible input sets. This combinatorial explosion hides the
simple fact that the relationship (distance) between Pi and
M is all that is needed for unique identification.

As we vary N from 16 to 50 while holding the training
set size constant at 36, we see that the performance of non-
relational methods (DeepSet, GNN-UNI) drops dramatically
while the relational bias of GLN-IPS allows its performance
to remain high (table 2).

6. Conclusion
In this work, we extend Graph Neural Networks (GNNs) to
operate on data without an explicitly defined graph structure.
Our work generates graphs in a task specific way. This
method outperforms set based methods that look at global
properties at a real cellular identification task.
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