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Abstract
Effective modeling of electronic health records
(EHR) is rapidly becoming an important topic
in both academia and industry. A recent study
showed that utilizing the graphical structure un-
derlying EHR data improves the performance
of prediction tasks such as heart failure diagno-
sis prediction. However, EHR data do not al-
ways contain the complete structural information.
Moreover, when it comes to claims data, they do
not have any structural information to begin with.
Under such circumstances, can we still do better
than just treating EHR data as a flat-structured
bag-of-features? In this paper, we study the possi-
bility of utilizing the implicit structure of EHR by
using Transformer for prediction tasks on pub-
lic electronic health records. Specifically, we
make a connection between graph networks and
Transformer, then use a variant of Transformer
on encounter-based prediction tasks such as med-
ication prediction and masked node prediction.
Our model empirically demonstrates superior pre-
diction performance to previous approaches on
two publicly available EHR datasets, indicating
that it can serve as an effective general-purpose
representation learning algorithm for EHR data.

1. Introduction
Large medical records collected by electronic healthcare
records (EHR) systems in healthcare organizations enabled
deep learning methods to show impressive performance in
diverse tasks such as predicting diagnosis (Lipton et al.,
2015; Choi et al., 2016a; Rajkomar et al., 2018), learning
medical concept representations (Che et al., 2015; Choi
et al., 2016d;b), and making interpretable predictions (Choi
et al., 2016c; Ma et al., 2017). As diverse as they are, one
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Figure 1. The graphical structure of electronic health records. A
single visit consists of multiple types of features, and their connec-
tions (red edges) reflect the physician’s decision process.

thing shared by all tasks is the fact that, under the hood,
some form of neural network is processing EHR data to
learn useful patterns from them. To successfully perform
any EHR-related task, it is essential to learn effective rep-
resentations of various EHR features: diagnosis codes, lab
values, encounters, and even patients themselves. EHR data
are typically stored in a relational database that can be rep-
resented as a hierarchical graph depicted in Figure 1. The
common approach for processing EHR data with neural
networks has been to treat each encounter as an unordered
set of features, or in other words, a bag of features. How-
ever, the bag of features approach completely disregards
the graphical structure that reflects the physician’s decision
process.

Recently, motivated by this EHR structure, Choi et al. (2018)
proposed MiME, a model architecture that reflects EHR’s
encounter structure, which outperformed various bag of fea-
tures approaches in prediction tasks such as heart failure
diagnosis prediction. Their study, however, naturally raises
the question: when the dataset does not contain structural
information (the red edges in Figure 1), can we do better
than bag of features? This question arises in many occa-
sions, since EHR data do not always contain the complete
structural information. Moreover, when it comes to claims
data, there is no structural information to begin with. To ad-
dress this question, we study the possibility of learning the
implicit EHR structure using Transformer (Vaswani et al.,
2017) on three different tasks based on encounter records.
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Specifically, we test our approach on two publicly available
EHR datasets, MIMIC-III (Johnson et al., 2016) and eICU
Collaborative Research Database (Pollard et al., 2018), both
of which do not contain structural information.

In the rest of the paper, we describe the graphical nature of
encounter records, and make the connection between graph
networks and Transformer. Then we use a variant of Trans-
former to learn the implicit structure of EHR while perform-
ing encounter-based prediction tasks such as medication
prediction. In all tasks, Transformer consistently outper-
formed baseline models, showing its potential to serve as an
effective general-purpose representation learning algorithm
for EHR data.

2. Related Work
As briefly discussed in the introduction, this work is moti-
vated by three seemingly independent works. MiME (Choi
et al., 2018) derives the encounter representation in a bottom-
up fashion according to the encounter structure. For exam-
ple in Figure 1, MiME first combines the embedding vectors
of lab results with Cardiac EKG embedding, which in turn is
combined with both Abdominal Pain embedding and Chest
Pain embedding. Then all diagnosis embeddings are pooled
together to derive the final visit embedding. By outperform-
ing various bag-of-features models in heart failure predic-
tion and general disease prediction, MiME demonstrated
the usefulness of the structural information of hospital en-
counter records.

Transformer (Vaswani et al., 2017) was proposed for natural
language processing, specifically machine translation. It
uses a novel method to process sequence data using only
attention (Bahdanau et al., 2014), and is recently showing
impressive performance in other tasks such as word repre-
sentation learning (Devlin et al., 2018).

Graph (convolutional) networks encompass various neural
network methods to handle graphs such as molecule struc-
tures, social networks, or physical experiments. (Kipf &
Welling, 2016; Hamilton et al., 2017; Battaglia et al., 2018).
In essence, many graph networks can be described as differ-
ent ways to aggregate a given node’s neighbor information,
combine it with the given node, and derive the node’s latent
representation (Xu et al., 2019).

In this work, we focus on the fact that hospital visits in-
herently are graphs, and try to leverage such characteristic
while performing three different encounter-based tasks us-
ing Transformer, which can be seen as a generalization of
graph networks. In the next section, we first describe the
graphical nature of EHR data, then make the connection
between Transformer and graph networks.

Figure 2. Learning the underlying structure of an encounter. We
use Transformer to start from the left, where all nodes are im-
plicitly fully-connected, and arrive at the right, where meaningful
connections are described with thicker edges.

3. Method
3.1. Electronic Health Records as a Graph

As depicted in Figure 1, the t-th visit V(t) starts with the
visit node v(t) at the top. Beneath the visit node are di-
agnosis nodes d

(t)
1 , d

(t)
2 , . . . , d

(t)

|d(t)|, which in turn lead to

ordering a set of medications m
(t)
1 ,m

(t)
2 , . . . ,m

(t)

|m(t)| and

procedures p
(t)
1 , p

(t)
2 , . . . , p

(t)

|p(t)|, where |d(t)|, |m(t)|, |p(t)|
respectively denote the number of diagnosis, medication,
and procedure codes in V(t). Some procedures produce lab
results r(t)1 , r

(t)
2 , . . . , r

(t)

|r(t)|, which may be associated with
continuous values (e.g. blood pressure) or binary values
(e.g. positive/negative allergic reaction). Since we focus on
a single encounter in this study, we omit the time index t
throughout the paper.

If we assume all features di, mi, pi, ri1 can be represented
in the same latent space, then we can view an encounter as
a graph consisting of |d| + |m| + |p| + |r| nodes with an
adjacency matrix A that describes the connections between
the nodes. We use ci as the collective term to refer to any
of di, mi, pi and ri for the rest of the paper. Given ci
and A, we can use graph networks or MiME2 to derive
the visit representation v and use it for downstream tasks
such as heart failure prediction. However, if we do not have
the structural information A, which is the case in many
EHR data and claims data, we typically use feed-forward
networks to derive v, which is essentially summing all node
representations ci’s and projecting it to some latent space.

3.2. Transformer and Graph Networks

Even without the structure information A, it is unreasonable
to treat V as a bag of nodes ci, because obviously physicians
must have made some decisions when making diagnosis and
ordering medications and procedures. The question is how

1If we bucketize the continuous values associated with ri, we
can treat ri as a discrete feature like di, mi, pi.

2MiME is in fact, a special form of graph networks with resid-
ual connections.
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to utilize the underlying structure without explicit A. One
way to view this problem is to assume that all nodes ci
in V are implicitly fully-connected, and try to figure out
which connections are stronger than the other as depicted
in Figure 2. In this work, we propose that Transformer
is a suitable algorithm to learn the underlying encounter
structure. To elaborate, we draw a comparison between two
cases:

• Case A: We know A, hence we can use a graph embed-
ding algorithm, specifically Graph Isomorphism Net-
work (GIN) (Xu et al., 2019) which can be expressed
as

C(j) = MLP(j)(D̂−1ÂC(j−1)W(j)), (1)

where Â = A + I, D̂3 is the diagonal node degree
matrix of Â, C(j) is the node embeddings of the j-
th convolution, and W(j) is the trainable parameters
of the j-th convolution. MLP(j) is a multi-layer per-
ceptron of the j-th convolution with its own trainable
parameters.

• Case B: We do not know A, hence we use Transformer,
specifically the encoder with a single-head attention,
which can be formulated as

C(j) = MLP(j)(softmax(
Q(j)K(j)>
√
d

)V(j)), (2)

where Q(j) = C(j−1)W
(j)
Q , K(j) = C(j−1)W

(j)
K ,

V(j) = C(j−1)W
(j)
V , and d is the column size of

W
(j)
K . W(j)

Q ,W
(j)
K ,W

(j)
V are trainable parameters of

the j-th Transformer block. Note that positional en-
coding using sine and cosine functions is not required,
since features in an encounter are underordered.

Given Eq. 1 and Eq. 2, we can readily see that there is
a correspondence between the normalized adjacency ma-
trix D̂−1Â and the attention map softmax(Q

(j)K(j)T

√
d

), and

between the node embeddings C(j−1)W(j) and the value
vectors C(j−1)W

(j)
V . In fact, GIN can be seen as a special

case of Transformer, where the attention mechanism is re-
placed with the known, fixed adjacency matrix. Conversely,
Transformer can be seen as a graph embedding algorithm
that assumes fully-connected nodes and learns the connec-
tion strengths during training. Given this connection, it
seems natural to use Transformer as an algorithm to learn
the underlying structure of visits. In our experiments, we use
a variant of Transformer that is more suitable for handling

3The original GIN does not use the normalizer D̂−1 to im-
prove model expressiveness on multi-set graphs, but we include
D̂−1 to make the comparison with Transformer clearer. Moreover,
encounter records are not multi-set.

Table 1. Statistics of the MIMIC-III and eICU
MIMIC-III eICU

# of patients 30,556 166,355
# of visit 39,638 200,859
# of unique features 14,446 7,751
- # of diagnosis codes 6,007 3,827
- # of medication codes 3,804 1,285
- # of procedure codes 1,872 1,330
- # of bucketized lab results 2,763 1,309
Avg. # of diagnosis per visit 13.24 3.57
Avg. # of medication per visit 38.65 14.16
Avg. # of procedures per visit 5.60 2.89
Avg. # of lab results per visit 72.26 37.58

EHR data. The details of the modification are described in
the Appendix A.

Note that Transformer’s self-attention has been used in previ-
ous works for learning relations between features in settings
other than text. Graph Attention Networks (Vaswani et al.,
2017) applied attention on top of the adjacency matrix to
learn non-static edge weights, and (Wang et al., 2018) used
self-attention to capture non-local dependencies in images.
Although our work also relies on attention, our interest lies
in the connection between Transformer and graph networks,
and whether Transformer can be an effective tool to cap-
ture the underlying graphical structure of EHR data even
when the structural information is missing, thus improving
encounter-based prediction tasks.

4. Experiments
4.1. Datasets

We conduct all of our experiments using two publicly avail-
able EHR datasets. MIMIC-III consists of ICU records
collected at Beth Israel Deaconess Medical Center between
2001 and 2012, and eICU consists of ICU records collected
from multiple sites in United States between 2014 and 2015.
From the encounter records, medication/procedure orders
and lab results, we extracted diagnosis codes, medication
codes, procedure codes, and lab values. As mentioned in
the introduction, both datasets do not contain structural
information. For example, we know that cough and ac-
etaminophen in Figure 1 occur in the same visit, but do
not know if acetaminophen was prescribed due to cough.
Table 1 summarizes the data statistics.

4.2. Baseline Models

• shallow: Each feature ci in a visit V is converted to a
latent representation ci using multi-layer feedforward
networks. Then the visit representation v is obtained by
simply summing all ci’s. We use layer normalization
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(Ba et al., 2016), drop-out (Srivastava et al., 2014) and
residual connections (He et al., 2016) between layers.

• deep: We use multiple feedforward layers (including
layer normalization, drop-out and residual connections)
on top of shallow to increase the expressivity. Note
that Zaheer et al. (2017) theoretically describes that this
model is sufficient to obtain the optimal representation
of a set of items (i.e., a visit consisting of multiple
features).

4.3. Prediction Tasks

In order to evaluate the model’s capacity to leverage the
implicit encounter structure, we use prediction tasks based
on a single encounter, rather than a sequence of encoun-
ters, which was the experiment setup in Choi et al. (2018).
Specifically, we test the models on the following tasks.

• Mortality prediction: Given an encounter record, we
train models to learn the visit embedding v (i.e., graph-
level representation) to predict patient death during the
ICU admission, i.e., a binary prediction.

• Medications prediction: Given an encounter record
with all medication codes removed, we train models to
learn the visit representation v to predict all medication
codes, i.e., a multi-label prediction with the output
dimension the size of the medication vocabulary.

• Masked diagnosis code prediction: Given an en-
counter record, we mask a random diagnosis code di.
We train Transformer to learn the embedding of the
masked code to predict its identity, i.e. a multi-class
prediction. For shallow and deep, we use the visit
embedding v as a proxy for the masked code represen-
tation.

Training details and hyperparameter settings are described
in Appendix B.

4.4. Prediction Performance

Table 2. Mortality prediction performance
Dataset Model Validation

AUCPR
Validation
AUROC

Test
AUCPR

Test
AUORC

shallow 0.8564 0.9731 0.8138 0.9615
MIMIC-III deep 0.8590 0.9727 0.8172 0.9619

Transformer 0.8934 0.9813 0.8685 0.9769
shallow 0.6677 0.9264 0.6728 0.9231

eICU deep 0.6747 0.9334 0.6638 0.9293
Transformer 0.6847 0.9345 0.6879 0.9335

Table 2, Table 3, and Table 4 respectively show mortality
prediction performance, medication prediction performance,
and masked diagnosis code prediction performance for all
models on two datasets.

Table 3. Medication prediction performance
Dataset Model Validation

AUCPR
Validation
AUROC

Test
AUCPR

Test
AUORC

shallow 0.6318 0.9856 0.6253 0.9856
MIMIC-III deep 0.6447 0.9869 0.6402 0.9867

Transformer 0.6571 0.9875 0.6514 0.9874
shallow 0.1229 0.7922 0.1235 0.7910

eICU deep 0.1550 0.8614 0.1567 0.8626
Transformer 0.2499 0.9397 0.2515 0.9408

Table 4. Masked diagnosis code prediction performance
Dataset Model Validation Accuracy Test Accuracy

shallow 0.0608 0.0603
MIMIC-III deep 0.0587 0.0341

Transformer 0.0869 0.0934
shallow 0.3488 0.3417

eICU deep 0.3549 0.3547
Transformer 0.3647 0.3581

In both mortality prediction and medication prediction, all
models show stronger performance on MIMIC-III than
eICU, which is reasonable given that MIMIC-III’s encounter
records are more dense, i.e. there are more features per en-
counter on average as shown by Table 1. In masked code
prediction, on the other hand, all models show stronger
performance on eICU, naturally because eICU’s diagnosis
code vocabulary is smaller. Furthermore, as MIMIC-III’s
encounter has more diagnosis codes on average, it is more
likely for the models to predict one of the visible diagnosis
codes.

As all three tables show, Transformer outperforms base-
line models on all three tasks on two different datasets.
This empirical evidence strongly indicates Transformer’s
suitability to be used as a general-purpose EHR encounter
modeling framework. Finally, Transformer significantly out-
performs baseline models on some tasks and datasets, while
the perforamnce improvement is not as dramatic for other
tasks and datasets, which requires further investigation in
the future. We discuss Transformer’s attention behavior in
Appendix C.

5. Conclusion
Learning effective patterns from raw EHR data is an es-
sential step for improving the performance of many down-
stream prediction tasks. In this paper, we addressed that
the previous state-of-the-art method required the complete
encounter structure information, and proposed Transformer
is a suitable method for learning the underlying structure
when the structure information is unknown. The experi-
ments demonstrated that Transformer outperformed various
baseline models on all three tasks on two publicly available
EHR datasets. In the future, we plan to apply Transformer
on patient-level tasks such as heart failure diagnosis predic-
tion or unplanned emergency admission prediction, while
working on improving the attention mechanism to learn
more medically meaningful patterns.
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A. Modification to Transformer
Instead of using the original Transformer, we made the
following changes to make it more suitable to handle EHR
data.

• Our task is not sequence-to-sequence. Therefore we
only use the encoding side of Transformer.

• As mentioned earlier, we do not use positional encod-
ing, since features in a visit do not for a sequence.

• We used the same WQ and WK in all Transformer
blocks. This is to regularize the optimization process
such that Transformer’s attention map (i.e. adjacency
matrix in graph networks) does not differ too much in
each block.

• Instead of concatenating the outputs from multiple
attention heads, we use element-wise summation. Con-
sidering how graph networks aggregate a given node’s
neighbor information, summing the outputs of multi-
ple attention heads corresponds to summing the node
embeddings that are learned from slightly different
adjacency matrices.

• Instead of using 6 Transformer blocks, we use 3 blocks,
which is sufficient for the top visit node v to attend to
the bottom lab values ri.

B. Training Details
All experiments were conducted with two datasets, MIMIC-
III and eICU. We divided the datasets into a training set, a
validation set, and a test set in 8:1:1 ratio. All models were
trained with Adam (Kingma & Ba, 2014) on the training set,
and performance was evaluated against the validation set
to select the final model. Final performance was evaluated
against the test set. We used the minibatch of size 32, and
trained all models for 300,000 iterations (i.e. minibatch
updates). All models were implemented in TensorFlow 1.13
(Abadi et al., 2016), and trained with a system equipped
Nvidia P100’s.

Tunable hyperparameters for shallow and deep baseline
model are as follows:

• Adam learning rate

• Drop-out rate between layers

• Feature embedding size

shallow used 6 feedforward layers and deep used 3 feedfor-
ward layers each before and after summing the embeddings.
The number of layers were chosen to match the number of
trainable parameters of Transformer.

Tunable hyperparameters for Transformer are as follows:

• Adam learning rate

• Drop-out rate between layers

• Number of attention heads

• Feature embedding size

Hyperparameters were searched via bayesian optimization
with Gaussian Process for 48-hour wall clock time.

C. Attention Behavior
Using the Transformer model trained for masked code pre-
diction on eICU, we chose a random encounter record from
the test set to study the attention behavior. Figures 3, 4,
and 5 respectively show the attention map from the first,
second and the third Transformer block, given an encounter
with 28 features including the visit node v. In the figures,
features that start with ‘D’ are diagnosis codes, ‘P’ proce-
dure codes, ‘M’ medication codes, and ‘L’ lab values. The
attention maps are from the perspective of the diagnosis
code D_cardiovascular|chest pain, ashd|hyperlipidemia (i.e.
heart disease), which has the red background.

As can be seen from the figures, the heart disease diagno-
sis code is attending uniformly to other features in the first
Transformer block, as the features haven’t observed one an-
other yet. However, in the second and the third Transformer
block, the heart disease diagnosis code is selectively attend-
ing to relevant features. For example in Figure 4, the heart
disease diagnosis code is almost exclusively connected to
P_pulmonary|ventilation and oxygenation|mechanical ven-
tilation, which is a procedure typically ordered for patients
with respiratory/cardiovascular disorders.

It is noteworthy that even with the modification to the train-
able parameters, Transformer learned to generate attention
maps of different distributions in each block, which can be
seen by the difference in Figure 4 and Figure 5. Further
analysis on the attention behavior and improved modifica-
tion of Transformer are required as future work in order to
guide Transformer to learn medically meaningful edges.
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Figure 3. Attention map of the first Transformer block. Code starting with ‘D’ are diagnosis codes, ‘P’ procedure codes, ‘M’ medication
codes, ‘L’ lab values. The diagnosis code with the red background is attending to the other features.

Figure 4. Attention map of the second Transformer block. Code starting with ‘D’ are diagnosis codes, ‘P’ procedure codes, ‘M’ medication
codes, ‘L’ lab values. The diagnosis code with the red background is attending to the other features.
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Figure 5. Attention map of the third Transformer block. Code starting with ‘D’ are diagnosis codes, ‘P’ procedure codes, ‘M’ medication
codes, ‘L’ lab values. The diagnosis code with the red background is attending to the other features.


