
Towards Permutation-Invariant Graph Generation

Jenny Liu 1 Aviral Kumar 2 Jimmy Ba 1 Kevin Swersky 3

Abstract
Learning to generate graph-structured data is a rel-
atively new and challenging problem. Some of the
most promising solutions so far rely on generat-
ing graphs via autoregressive processes; however,
computing the likelihood under these models re-
quires marginalizing over the set of all possible
node orderings, a generally intractable problem.
In this paper, we outline a permutation-invariant
model based on variational autoencoders, with
an expressive flow-based prior. We show results
training the model in a 2-step process and demon-
strate that this could be a promising approach for
graph generation.

1. Introduction
Graph-structured data is ubiquitous in problems within sci-
ence and engineering, and modeling graphs is an impor-
tant component of prediction and reasoning within these
domains. Machine learning has recently turned its atten-
tion to using graph-structured neural networks (Gori et al.,
2005; Scarselli et al., 2009; Li et al., 2015; Kipf & Welling,
2016b; Gilmer et al., 2017) that can exploit the structure
of relational systems to create more accurate and general-
izable predictions. These can be used to predict molecular
properties to aid in search and discovery (Duvenaud et al.,
2015; Gilmer et al., 2017), or to learn physical properties of
robots such that new structures can be controlled without
re-learning a control policy (Wang et al., 2018).

While graph neural networks have enjoyed success in the
supervised case, learned generative models of graphs are a
relatively new and less explored area. Machine learning has
been quite successful at generative modeling of complex do-
mains such as images, audio, and text. However, relational
data poses new and interesting challenges. For example,
graphs are permutation-invariant: permutations of the nodes
results in the same underlying structure.

1Vector Institute, University of Toronto, Canada 2UC Berkeley,
California, USA 3Google Research, Toronto, Canada. Correspon-
dence to: Jenny Liu <jyliu@cs.toronto.edu>.

Presented at the ICML 2019 Workshop on Learning and Reasoning
with Graph-Structured Data Copyright 2019 by the author(s).

One of the most successful approaches so far is to model
the graph using an auto-regressive process (Li et al., 2018;
You et al., 2018). These generate each node in sequence,
and for each newly generated node, the corresponding edges
to previously generated nodes are also created. In theory,
this is capable of modeling the full joint distribution, but
computing the full likelihood requires marginalizing over
all possible node-orderings. Sequential generation using
RNNs also potentially suffers from the issue of long-range
dependencies for large graphs.

In this paper, we propose an approach to modeling graphs
in a permutation-invariant way. We use a reversible formu-
lation of graph neural networks (Kumar et al., 2018) to form
a distribution over sets of related points. This is a direct ex-
tension of normalizing flows (Rezende & Mohamed, 2015;
Dinh et al., 2017) to continuous spaces involving relational
data. As our overall objective is to produce a generative
model over graph structures, which are inherently discrete,
we augment our model with a graph auto-encoder. The
auto-encoder generates an embedding space that the nor-
malizing flow models, and the decoder generates adjacency
matrices from the embeddings. We train each component
separately, and combine them at inference time. The re-
sult is a permuation-invariant generative model that is well
suited to parallel computing architectures.

2. Methods
2.1. Graph Neural Networks

Graph Neural Networks (GNNs) or Message Passing Neu-
ral Nets (MPNNs) (Gilmer et al., 2017) are a generaliza-
tion/unification of a number of neural net architectures
on graphs used in literature for a variety of tasks rang-
ing from molecular modeling to network relational mod-
eling. In general, MPNNs have two phases in the for-
ward pass – a message passing (MP) phase and a readout
phase (R). The MP phase runs for T time steps, and is
defined in terms of message generation functions Mt and
vertex update functions Ut. During each step in the mes-
sage passing phase, hidden node features h(v)

t at each node
in the graph are updated based on messages mt+1(v) ac-
cording to mt+1(v) =

∑
u∈N (v)Mt(h

(v)
t ,h

(u)
t ,Ωu,v) and

h
(v)
t+1 = Ut(h

(v)
t ,mt+1(v)), where N (v) denotes the set

Towards Permutation-Invariant Graph Generation

of neighbours to node v in the graph. The readout phase
usually converts the final node embeddings generated at
the end of message passing into task specific features. For
example, to have one embedding for the entire graph, we
have yG = Agg({h(v)

T }), where Agg(·) is an aggregation
function.

One particularly useful aggregation function is graph atten-
tion (Velikovi et al., 2018), which uses attention (Bahdanau
et al., 2015; Vaswani et al., 2017) to weight the messages
from adjacent nodes. This involves computing an attention
coefficient α between adjacent nodes using a linear transfor-
mation W , an attention mechanism a, and a nonlinearity σ,

e
(v,u)
t+1 = a(Wh

(v)
t ,Wh

(u)
t)

αv,u
t+1 =

exp(e
(v,u)
t+1)∑

w∈N (v) exp(e
(u,w)
t+1)

m
(v)
t+1 = σ

(∑
u∈N (v)

α
(v,u)
t+1 M(h

(v)
t ,h

(u)
t ,Ωu,v)

)
Multi-headed attention (Vaswani et al., 2017) applies atten-
tion with multiple weights W and concatenates the results.

2.2. Reversible Graph Neural Networks (GRevNets)

GRevNets (Kumar et al., 2018) are a family of reversible
message passing neural network models. In order to con-
vert a GNN/MPNN to a Reversible MPNN (GRevNet), the
node feature matrix is split into two parts along the feature
dimension–call them H

(0)
t and H(1)

t respectively. Now for
a particular node in the graph v, the two parts of its features
at time t in the message passing (MP) phase are called h0

t

and h1
t respectively. [concat(h0

t ,h
1
t) = h

(v)
t]

One step of the message passing procedure is broken down
into into two intermediate steps, each of which is denoted
as a half-step. F (.) and G(.) denote two instances of the
1-step MP transformation (both F andG consist of applying
Mt once and then Ut once – that is, generate messages from
each nodes, send it to neighbours and update node hidden
states based on the aggregated message received) on the
node features given the graph adjacency matrix Ω. Figure 1
depicts the procedure in detail.

h0
t+0.5 = h0

t + F (h1
t) h0

t+1 = h0
t+0.5

h1
t+0.5 = h1

t h1
t+1 = h1

t+0.5 +G(h0
t+0.5)

Reversibility: It is easy to see that this architecture is re-
versible. For any time step during message passing, if
we know the values of h0

t and h1
t , then we can simply

recover the previous time step node features by revers-
ing the computation: h0

t−1 = h0
t − F (h1

t − G(h0
t)) and

h1
t−1 = h1

t − G(h0
t). In the same spirit as flows[?], we

can use the chain rule of statistics to give us the rule for
exact density transformation. So, if we assume ht ∼ P (ht),
then the density is given by: p(ht) = det

∣∣dht−1

dht

∣∣p(ht−1),
where the Jacobian is given by a lower triangular matrix
with determinant 1, hence making density computations
tractable. In practice, we also apply a scaling factor, thereby
making the model non-volume preserving by modifying the
equations as: h0

t+0.5 = exp(F2(h1
t)) · h0

t + F1(h1
t) and

h0
t+1 = h0

t+0.5 and analogously for the other half. This
scales the Jacobian by the product of the scaling factor in
each half. For more details please refer to (Dinh et al.,
2017).

Figure 1. Architecture of 1 step Message Passing in a GRevNet:
h0
t , h1

t denote the two parts of the node-features of a particu-
lar node, F1(.), F2(.) and G1(.), G2(.) are 1-step MP transforms
consisting of applying Mt and Ut once each. The scaling func-
tions (F2, G2) are shown in red, whereas the translation functions
F1, G1 are shown in blue.

Owing to its reversibility, a GRevNet (Kumar et al., 2018)
that can preserve bijection between the input features and
output features can be used to model expressive priors for
learning distributions over the graph structure via auto-
encoding optimization schemes. As the computational units
in a GRevNet are GNN message passing modules, such a
reversible generative model is also permutation-invariant.
In particular, if the GRevNet maps from one continuous
space to another using the relational structure induced by
an adjacency matrix, then the GRevNet can be used as a
graph-based normalizing flow. We use this insight to design
a generative model on graphs which we describe next.

2.3. Proposed Generative Model

The aim of learning graph generative models is to max-
imize the marginal likelihood of graphs P (G) under the
training data. Our objective is to train a generative model
of graph structures, an inherently discrete problem. Our
strategy to solve this is to use a two-step process: (1) train a
permutation-invariant graph auto-encoder to create a graph
encoder that embeds graphs into a continuous space; (2)
train a GRevNet to model the distribution of the graph em-
beddings, and use the decoder to generate graphs. Each

Towards Permutation-Invariant Graph Generation

stage is trained separately.

In the absence of a known graph structure for generation,
we use a fully connected graph neural network. This allows
the model to learn how to organize nodes in order to match
a specific distribution. However, this poses a problem for
certain aggregation functions like sum and mean, where
the messages from each node will have to contend with
the messages from every other node. If there is a salient
piece of information being sent from one node to another,
then it could get drowned out by less informative messages.
Instead, we opt to use graph attention, which allows each
node to choose the messages that it deems to be the most
informative.

We now describe how we perform structure learning. In
contrast to GraphVAE (Kipf & Welling, 2016a), which gen-
erates a single vector to model the entire graph, we instead
embed a set of nodes in a graph jointly, but each node is
mapped to its own embedding vector. This avoids the issue
of having to run matching in the decoder.

We propose a graph-autoencoder that takes in a graph G and
reconstructs the elements of the adjacency matrix, A, where
Aij = 1 if node vi has an edge connecting it to node vj ,
and 0 otherwise. We focus on undirected graphs, meaning
that we only need to predict the upper (or lower) triangular
portion of A, but this methodology could easily extend to
directed graphs. The encoder takes in a set of node features
H ∈ RN×d and an adjacency matrix A ∈ {0, 1}N×

N
2 (N2

since the graph is undirected) and outputs a set of node em-
beddings X ∈ RN×k. The decoder takes these embeddings
and outputs a set of edge probabilities Â ∈ [0, 1]

N×N
2 . For

parameters θ, we use the binary cross entropy loss function,

L(θ) = −
∑N

i=1

∑N
2
j=1Aij log(Âij) + (1 − Aij) log(1 −

Âij) We use a relatively simple decoder. Given node embed-
dings xi and xj , our decoder outputs the edge probability
as Âij = 1

1+exp(C(‖xi−xj‖22−1))
, where C is a temperature

hyperparameter, set to 10 in our experiments. This reflects
the idea that nodes that are close in the embedding space
should have a high probability of being connected.

The encoder is a standard GNN with multi-head dot-product
attention, that uses the adjacency matrix A as the edge struc-
ture (and no additional edge features). In order to break
symmetry, we need some way to distinguish the nodes from
each other. If we are just interested in learning structure,
then we do not have access to node features, only the ad-
jacency matrix. In this case, we generate node features H
using random Gaussian variables hi ∼ N (0, σ2I), where
we use σ2 = 0.3. This allows the graph network to learn
how to appropriately separate and cluster nodes according
to A. We generate a new set of random features each time
we encode a graph. This way, the graph can only rely on
the features to break symmetry, and must rely on the graph

structure to generate a useful encoding.

Putting the GRevNet together with the graph encoder, we
map training graphs from H to X and use this as training
inputs for the model. Generating involves sampling Z ∼
N (0, I) followed by inverting the model,X = f−1(Z), and
finally decoding X into A and thresholding to get binary
edges.

Figure 2. Pipeline of our proposed graph generation framework.
We train a graph auto-encoder to learn node embeddings that can
reconstruct the given adjacency matrix. We then train a GRevNet
to model this distribution over node embeddings.

3. Experiments
3.1. Flow Priors

To motivate using the GRevNet as a more expressive prior,
we trained a VAE on binarized MNIST and compared the
performance of a RealNVP versus Gaussian prior. We found
that the RealNVP prior achieves a better log likelihood.

Table 3. Binarized MNIST evaluation of a VAE trained with three
different priors. MIXTURE OF GAUSSIANS has 100 mixture com-
ponents.

PRIOR NLL

GAUSSIAN 92.9
MIXTURE OF GAUSSIANS 90.7
REALNVP 89.8

3.2. GRevNet Flows

We next investigate the expressiveness of our GRevNet flow
prior by training a GRevNet model on 3 synthetic datasets
for structured density estimation.

Datasets: In MIXTURE OF GAUSSIANS (MOG), each train-
ing example is a set of 4 points in a square configuration.

Towards Permutation-Invariant Graph Generation

Table 1. Comparison of train negative log likelihood (NLL) for RealNVP and GRevNet on 3 synthetic datasets.

DATASET

ARCHITECTURE MOG (NLL) MOG RING (NLL) 6-HALF MOONS (NLL)

REALNVP 4.2 5.2 -1.2
GREVNET 3.6 4.2 -1.7

Table 2. Train and test binary cross-entropy (CE), averaged over the total number of nodes. TOTAL # INCORRECT EDGES measures the
number of incorrect edge predictions (either missing or extraneous) in the reconstructed graphs over the entire dataset. TOTAL # EDGES

lists the total number of edges in each dataset.

BINARY CE TOTAL # INCORRECT EDGES TOTAL # EDGES

DATASET TRAIN TEST TRAIN TEST TRAIN TEST

EGO-SMALL 9.8E-4 11E-04 24 32 3758 984
COMMUNITY-SMALL 5E-4 7E-04 10 2 1329 353

Each point is drawn from a separate isotropic Gaussian, so
no two points should land in the same area. MIXTURE OF
GAUSSIANS RING (MOG RING) takes each example from
MOG and rotates it randomly about the origin, creating an
aggregate training distribution that forms a ring. 6-HALF
MOONS interpolates the original half moons dataset using 6
points with added noise. Visualizations of the training data
are provided in the Appendix.

We train a GRevNet where each of F and G is a self-
attention module followed by an MLP, and we train an
analogous RealNVP model with the same number of steps
and the same MLP architecture. The only difference is the
RealNVP model does not have self-attention, as nodes are
updated independently from one another.

As shown in Table 1, GREVNET is able to achieve signif-
icantly lower negative log likelihood than REALNVP. As
GREVNET allows message passing between nodes, it can
more accurately model the dependencies between nodes,
whereas by design, REALNVP cannot do this. We show a
visualization of the generated samples in Figures 4-6 in the
Appendix.

3.3. Graph Generation

Datasets: We run our graph generation model on two
datasets, COMMUNITY-SMALL and EGO-SMALL from
GraphRNN (You et al., 2018). COMMUNITY-SMALL is
a procedurally-generated set of 100 2-community graphs,
where 12 ≤ |V | ≤ 20. EGO-SMALL is a set of 200 graphs,
where 4 ≤ |V | ≤ 18, drawn from the larger Citeseer net-
work dataset (Sen et al., 2008).

3.3.1. GRAPH AUTO-ENCODER

We train a graph auto-encoder with attention. Every training
epoch, we generate new Gaussian noise features for each
graph as input to the encoder.

Table 2 shows that our auto-encoder generalizes well to
unseen test graphs, with a small gap between train and
test cross-entropy. The total # of incorrect edges metric
shows that the model achieves good test reconstruction
on EGO-SMALL and near-perfect test reconstruction on
COMMUNITY-SMALL.

3.3.2. GREVNET PRIOR

Our trained auto-encoder gives us a distribution over node
embeddings that are useful for graph reconstruction. We
then train a GRevNet to maximize the likelihood of these
embeddings using an isotropic Gaussian as the prior. Once
trained, at generation time we can flow N random Gaussian
embeddings sampled from the prior to N node embeddings
by running the GRevNet forward. These node embeddings
will then describe a graph adjacency when run through the
decoder.

In Figure 3, we visualize the training distribution and gen-
erated samples of our model on the two datasets. In the
Appendix we give a qualitative comparison between our
model and the state-of-the-art GraphRNN baseline.

4. Conclusion
We introduce a generative extension of reversible graph neu-
ral networks (GRevNets) based on normalizing flows. Our
model is capable of learning distributions over related points
in a continuous space. We combine this with a graph auto-
encoder to generate adjacency matrices, and train both com-
ponents independently. Our model is permutation-invariant,
while still competitive with auto-regressive graph genera-
tion. In future work, we plan to focus on training the entire
system in an end-to-end fashion under a variational auto-
encoding framework (Kingma & Welling, 2014).

Towards Permutation-Invariant Graph Generation

Figure 3. From Left to Right: EGO-SMALL training data, generated samples from GRevNet, COMMUNITY-SMALL training data, generated
samples from GRevNet. All examples picked randomly.

References
Bahdanau, D., Cho, K., and Bengio, Y. Neural machine

translation by jointly learning to align and translate. Inter-
national Conference on Learning Representations, 2015.

De Cao, N. and Kipf, T. MolGAN: An implicit generative
model for small molecular graphs. arXiv e-prints, art.
arXiv:1805.11973, May 2018.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density es-
timation using real nvp. International Conference on
Learning Representations, 2017.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in neural information processing
systems, pp. 2224–2232, 2015.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quan-
tum chemistry. In Precup, D. and Teh, Y. W. (eds.),
Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 1263–1272, International
Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.
press/v70/gilmer17a.html.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., volume 2, pp. 729–734. IEEE, 2005.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf,
B., and Smola, A. A kernel two-sample test. J. Mach.
Learn. Res., 13:723–773, March 2012. ISSN 1532-
4435. URL http://dl.acm.org/citation.
cfm?id=2188385.2188410.

Kearnes, S., Li, L., and Riley, P. Decoding Molecular
Graph Embeddings with Reinforcement Learning. arXiv
e-prints, art. arXiv:1904.08915, Apr 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. International Conference on Learning Represen-
tations, 2014.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
CoRR, abs/1611.07308, 2016a.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016b.

Kumar, A., Ba, J., Kiros, J., and Swersky, K. Grevnet:
Improving graph neural nets with reversible computa-
tion. In NeuRIPS Relational Representation Learning
Workshop, NeurIPS 2018, Montreal, Canada, 2018.
URL https://drive.google.com/file/
d/1UYsTSnyKjl6MAox9vwGtV77wB_3vMavR/
view.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning Deep Generative Models of Graphs. arXiv
e-prints, art. arXiv:1803.03324, Mar 2018.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International Conference on Ma-
chine Learning, volume 37, pp. 1530–1538, 2015.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Technical report, 2008.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. 2017. URL https://arxiv.org/
pdf/1706.03762.pdf.

http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
http://dl.acm.org/citation.cfm?id=2188385.2188410
http://dl.acm.org/citation.cfm?id=2188385.2188410
https://drive.google.com/file/d/1UYsTSnyKjl6MAox9vwGtV77wB_3vMavR/view
https://drive.google.com/file/d/1UYsTSnyKjl6MAox9vwGtV77wB_3vMavR/view
https://drive.google.com/file/d/1UYsTSnyKjl6MAox9vwGtV77wB_3vMavR/view
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

Towards Permutation-Invariant Graph Generation

Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Li,
P., and Bengio, Y. Graph attention networks. In In-
ternational Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Wang, T., Liao, R., Ba, J., and Fidler, S. Nervenet: Learn-
ing structured policy with graph neural networks. ICLR,
2018.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. GraphRNN: Generating realistic graphs with deep
auto-regressive models. In Dy, J. and Krause, A.
(eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 5708–
5717, Stockholmsmssan, Stockholm Sweden, 10–15 Jul
2018. PMLR. URL http://proceedings.mlr.
press/v80/you18a.html.

5. Appendix
5.1. Related Work

Most existing approaches to graph generation draw inspira-
tion from the success of deep generative models in computer
vision and natural language processing. Autoregressive
Models such as GraphRNN (You et al., 2018) and (Li et al.,
2018) use a BFS-ordering over the nodes of a graph and
SMILES representation for molecules respectively to define
an injection between graphs to the space of sequences of
nodes of the graph, and train an autoregressive model to sam-
ple edges and nodes for the graph. However, marginalizing
over all possible BFS orderings of a graph during training
is intractable and randomization over permutations during
training is still not enough to generalize to all of them is a
challenge in this model. In this work, we used GRevNet
flows to provide permutation-invariant modelling of graphs.

(Kipf & Welling, 2016a) cast the graph structure learning
problem in a probabilistic auto-encoding framework, train-
ing the model with reconstruction loss treating graph struc-
ture generation as an optimization problem in continuous
space analogous to image generation using VAEs. This
model over-generates nodes and has to perform a matching
in the decoder as a result. Concurrent to us, (Kearnes et al.,
2019) used techniques inspired from approximate dynamic
programming to train a sequential decoder for graphs in
a similar way to an autoregressive model trained without
supervised learning.

Further, other works inspired from Generative Adversarial
Networks (GANs) train discriminators on sets of real and
fake graphs (De Cao & Kipf, 2018). In our work, we con-
sider a graph structure learning problem similar to (Kipf &
Welling, 2016a) but with more expressive prior features (h)

which are outputs of a fully reversible and explicit density
generative model and are much more expressive than just a
factored gaussian posterior.

5.2. GRevNet Samples

In Figure 4 we provide a visualization of the training data
and generated samples for the structured density estimation
experiments as described in Section 3.2.

5.3. Graph Generation Quantitative Evaluation

We evaluate our model by using the quantitative evaluation
technique in GraphRNN (You et al., 2018), which calcu-
lates the MMD distance (Gretton et al., 2012) between the
generated graphs and a previously unseen test set on three
statistics based on degrees, clustering coefficients, and orbit
counts. We use the implementation of GraphRNN provided
by the authors to train their model and their provided eval-
uation script to generate all quantitative results, which are
provided in Table 4.

5.4. Experimental Setup

5.4.1. FLOW PRIORS

We used an encoder with 5 convolutional layers and a de-
coder with 5 deconvolutions. The RealNVP prior consisted
of 4 coupling layers, where each of F and G is an MLP
with 2 layers of 512 hidden units each. We trained for 25k
steps and used the Adam Optimizer with a learning rate of
1e-03.

5.4.2. GREVNET FLOWS

We used 12 GRevNet coupling layers, and for each MLP
we had 5 fully-connected layers of 256 hidden units each
with ReLu nonlinearities. We trained for 15k steps using
Adam with a learning rate of 1e-04.

5.4.3. GRAPH AUTO-ENCODER

We used a GNN with 10 timesteps, and each MLP had 3
layers of 2048 hidden units with ReLu nonlinearities. We
used Adam with a learning rate of 5e-04.

5.4.4. GREVNET GRAPH PRIOR

We used a GRevNet with 12 timesteps, and each MLP had
3 layers of 2048 hidden units with ReLu nonlinearities. We
used Adam with a learning rate of 1e-05.

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
http://proceedings.mlr.press/v80/you18a.html
http://proceedings.mlr.press/v80/you18a.html

Towards Permutation-Invariant Graph Generation

COMMUNITY-SMALL EGO-SMALL

MODEL DEGREE CLUSTER ORBIT DEGREE CLUSTER ORBIT

GRAPHRNN 0.03 0.01 0.01 0.04 0.05 0.06
GREVNET 0.12 0.15 0.02 0.01 0.03 0.0008

Table 4. Graph generation results depicting MMD for various graph statistics between the test set and generated graphs. The results are
obtained by comparing the test set with 1024 generated graphs. We trained and evaluated the result over 5 separate runs per model.

(a) Training examples (b) GRevNet samples (c) RealNVP samples

Figure 4. (a) shows the aggregate training distribution for the MIXTURE OF GAUSSIANS (MOG) dataset in gray, as well as 5 individual
training examples. Each training example is shown in a different color and is a structured set of nodes where each node is drawn from a
different Gaussian. (b) and (c) each show 5 generated samples from GRevNet and RealNVP, selected randomly, where each sample is a
different color. The GRevNet learns to generate structured samples where each node resembles a sample from a different Gaussian, while
RealNVP cannot.

(a) Training examples (b) GRevNet samples (c) RealNVP samples

Figure 5. (a) shows the aggregate training distribution for the MIXTURE OF GAUSSIANS RING (MOG RING) dataset in gray, as well as 5
individual training examples. Each training example is shown in a different color and is a structured set of nodes in a square configuration.
(b) and (c) each show 5 generated samples from GRevNet and RealNVP, selected randomly, where each sample is a different color.
GRevNet makes one mistake with the green sample, but otherwise all the other samples have square configurations, whereas RealNVP
generates several examples (purple, green, orange) that are not square-like.

Towards Permutation-Invariant Graph Generation

(a) Training examples (b) GRevNet samples (c) RealNVP samples

Figure 6. (a) shows the aggregate training distribution for the 6-HALF MOONS dataset in gray, as well as 3 individual training examples.
Each training example is shown in a different color and is a structured set of nodes where each node is drawn from a different cluster. (b)
and (c) each show 3 generated samples from GRevNet and RealNVP, selected randomly, where each sample is a different color. GRevNet
can sometimes generate perfect samples, as in the orange and pink examples.

