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Abstract
Despite the recent success of graph convolution
networks (GCNs) in modeling graph structured
data, its vulnerability to adversarial attacks have
been revealed and attacks on both node feature
and graph structure have been designed. Direct
extension of adversarial sample based defense
algorithms meets with immediate challenge be-
cause computing the adversarial network requires
substantial cost. We propose addressing this issue
by perturbing the latent representations in GCNs,
which not only dispenses with adversarial network
generation, but also attains improved robustness
and accuracy by respecting the latent manifold of
the data. Experimental results confirm the supe-
rior performance over strong baselines.

1. Introduction
Neural networks have achieved great success on Euclidean
data for image recognition, machine translation, and speech
recognition, etc. However, modeling with non-Euclidean
data—such as complex networks with geometric informa-
tion and structural manifold—is more challenging in terms
of data representation. Mapping non-Euclidean data to Eu-
clidean, which is also referred to as embedding, is one of
the most prevalent techniques. Recently, graph convolu-
tional networks (GCNs) have received increased popularity
in machine learning for structured data. The first phenom-
enal work of GCN was presented by (Bruna et al., 2013),
which developed a set of graph convolutional operations
based on spectral graph theory. The conventional GCN
was introduced by (Kipf & Welling, 2017) for the task of
node classification, and they represent nodes by repeated
multiplication of augmented normalized adjacency matrix
and feature matrix, which can be interpreted as the first
order approximation of localized spectral filters on graphs
(Hammond et al., 2011; Defferrard et al., 2016). GCNs have
been widely applied to a variety of machine learning tasks,
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Figure 1. Different perturbation models for GCNs

including node classification (Kipf & Welling, 2017), graph
clustering (Duvenaud et al., 2015), link prediction (Kipf
& Welling, 2016; Schlichtkrull et al., 2018), recommender
systems (Berg et al., 2018), etc.

Due to the recursive neighborhood expansion across layers,
computation and memory are often required in considerable
amount for GCNs, especially when the graph is large and
dense. To alleviate these demands, Chen et al. (2018) pro-
posed a batched scheme by introducing the Monte Carlo
sampling across neighborhood. Similarly, Chen et al. (2017)
introduced a stochastic version of GCNs and reduced the
variance in the mean time. Wu et al. (2019) demonstrated
that linearized GCNs do not impact the accuracy in many
applications, while the resulting model can be easily scaled
to large graphs naturally.

Despite the advantages in efficient and effective learning of
representations and predictions, GCNs have been shown vul-
nerable to adversarial attacks. Although adversarial learning
has achieved significant progress in recent years (Szegedy
et al., 2014), the graph structure in GCNs contributes an ad-
ditional layer of vulnerability. The conventional approaches
based on adversarial samples (a.k.a. attacks) are typically
motivated by adding imperceptible perturbation to images,
followed by enforcing the invariance of prediction outputs
(Kurakin et al., 2017). This corresponds to perturbing the
node features in GCNs as shown by r in Figure 1, and has
received very recent study. Feng et al. (2019) introduced the
graph adversarial training (GAT) as a dynamic regulariza-
tion scheme based on the graph structure. Deng et al. (2019)
proposed a sample-based batch virtual adversarial training
to promote the smoothness of the model.

However, the graph topology itself can be subject to attacks
such as adding or deleting edges or nodes, as marked by
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∆ in Figure 1. Zügner et al. (2018) and Dai et al. (2018)
constructed effective structural attacks both at training time
(poisoning) and at testing time (evasion). Finding the ad-
versarial input graph is indeed a combinatorial optimization
problem that is typically NP-hard, and the perturbations are
no longer imperceptible. Dai et al. (2018) proposed a rein-
forcement learning based attack that learns a generalizable
attack policy to mis-classify a target in both graph classifica-
tion and node classification. Zügner et al. (2018) introduced
a surrogate model to approximate the perturbed graph struc-
ture and feature. Both of their methods considered attacks
at the test stage, i.e., evasion attacks. By solving a bilevel
problem from meta learning, Zügner & Günnemann (2019)
generated adversarial examples that are graph structures,
and in contrast to the previous attacks, they do not need to
specify the target. Their attack modifies the training data to
worsen the performance, hence a poison attack.

Although the technique of adversarial sample can be directly
applied to defend against structural attacks, an immediate
obstacle arises from computational complexity. All the
aforementioned structural attacks are much more computa-
tion intensive than standard attacks in image classification.
Therefore alternating between model optimization and ad-
versarial sample generation can be prohibitively time con-
suming, making a new solution principle in high demand.

The goal of this paper, therefore, is to develop a new adver-
sarial training algorithm that defends against attacks on both
node features and graph structure, while at the same time
maintaining or even improving the generalization accuracy.
Our intuition draws upon two prior works. Firstly, in adver-
sarial training over word inputs, Miyato et al. (2017) noted
that words are discrete and are not amenable to infinitesi-
mal perturbation. So they resorted to perturbing the word
embeddings that are continuous.

A straightforward analogy of word embeddings in GCNs is
the first layer output H(1) after graph convolution, which
blends the information of both node features and the graph.
So we propose injecting adversarial perturbations to H(1),
as shown by ζ in Figure 1. This leads to indirect pertur-
bations to the graph, which implicitly enforces robustness
to structural attacks. As shown in Section 2.1, this can
be achieved via a regularization term on H(1), completely
circumventing the requirement of generating adversarial at-
tacks on the graph structure. We will refer to the approach
as latent adversarial training (LAT-GCN).

However, Miyato et al. (2017) also noted that “the perturbed
embedding does not map to any word” and “we thus propose
this approach exclusively as a means of regularizing a text
classifier”. To address the analogous concern in GCNs, we
leverage the observation by Stutz et al. (2019) that adver-
sarial examples can benefit both robustness and accuracy
if they are on the manifold of low-dimension embeddings.

Using H(1) as a proxy of the latent manifold, LAT-GCN
manages to generate “on-manifold“ perturbations, which, as
our experiments show in Section 3, help to reduce the suc-
cess rate of adversarial attacks for GCNs while preserving
or lifting the accuracy of the model.
Notation. We denote the set of vertices for a graph G
as V , and denote the feature matrix as X ∈Rn×d, where
n = |V| and d is the number of node features. A ∈ Rn×n

is the adjacency matrix, and it is a {0, 1} valued matrix for
unweighted graphs. After adding a self looped link to each
node, we have Â = A + I, and we construct a diagonal
matrix with D̂ii =

∑
j Âij . The augmented normalized

adjacency matrix is then defined as Ã = D̂−1/2ÂD̂−1/2.

2. Latent Adversarial Training of GCNs
The original GCN model has the forward propagation as:

H(l+1) = σ(ÃH(l)W(l)), l ≥ 0, (1)

where the initial node representation is H0 = X. For no-
tational convenience, we assume all nodes are represented
by a d-dimensional vector in all layers, i.e., W(l) ∈ Rn×d.
Without loss of generality, let us consider a two-layer GCN,
which is commonly used in practice. Then the standard
GCN tries to find the optimal weights θ := (W(1),W(2))
that minimize some loss fθ (e.g., cross-entropy loss) over
the latent representation H(2). That is, minθ fθ(G,X).

In order to improve the robustness to the perturbation in
input feature X, Feng et al. (2019) and Deng et al. (2019)
considered generative adversarial training over X, which at
a high level, optimizes minθ maxr∈C fθ(G,X + r). Here
r is the perturbation chosen from a constrained domain C.

Naturally, it is also desirable to defend against attacks on
the graph topology of G. Such structural attacks have been
studied in (Dai et al., 2018; Zügner et al., 2018; Zügner &
Günnemann, 2019), but no corresponding defense algorithm
has been proposed yet. Different from attacks on X, here
the attacks on G are discrete (hence not imperceptible), and
finding the most effective attacks can be NP-hard. This
creates new obstacles to generative adversarial training, and
therefore we resort to a regularization approach based on
the latent layer H(1).

Specifically, considering that the information in G and X is
summarized into the first layer output H(1), we can adopt
generative adversarial training directly on H(1):

min
θ

max
ζ∈D

fθ(H(1) + ζ), (2)

where the symbol fθ is overloaded to denote the loss based
on H(1) with perturbation ζ. The benefits are two folds.
Firstly, H(1) is continuously valued, making it meaningful
to apply small perturbations to it, which indirectly represent
the perturbations in X and G. Secondly, Stutz et al. (2019)
contended that perturbation at latent layers (such as H(1))
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Algorithm 1 Latent Adversarial Optimization for GCN
input A,X

while not converged for (3) do
while not converged for (5) do

Apply ADAM to find ζ∗ (gradient in ζ from Eq (6)).
Take one step of ADAM in θ with the gradient com-

puted by∇θfθ(H(1)) + γ∇θ

∥∥∥Ãζ∗W(2)
∥∥∥2
F

.

are more likely to generate “on-manifold” samples that ad-
ditionally benefits generalization, while perturbations in the
raw input space (e.g., X) is likely to deviate from the origi-
nal data manifold and hence irrelevant to generalization.

Unfortunately, the perturbation ζ in (2) is chosen jointly
over all nodes in the graph setting, which is different from
the common adversarial setting where each individual exam-
ple seeks its own perturbation independently. As a result, the
computational cost is higher, which is further exacerbated
by the nested min-max optimization. To alleviate this prob-
lem, we further adopt the standard regularization variant of
adversarial training, which aims to promote the smoothness
of model predictions with respect to the perturbations:

min
θ
Lθ(Ã,X) := fθ(H(1)) + γRθ(H(1)), (3)

where γ ≥ 0 is a trade-off parameter, and the regularizer
Rθ is defined as the Frobenius distance between the original
model output (second layer) and that after perturbing H(1):

Rθ(H(1)) = max
ζ∈D

∥∥∥Ã(H(1) + ζ
)
W(2) − ÃH(1)W(2)

∥∥∥2
F
.

(4)

Here we constrain the perturbed noise to be imperceptible
via D := {ζ : ‖ζi:‖ ≤ ε,∀i ∈ {1, . . . , n}}. Although it is
still a min-max problem, the inner maximization problem in
Rθ is now decoupled with the loss fθ , hence solvable with
much ease. Indeed, both the objective and the constraint
are quadratic, permitting efficient computation of gradient
and projection. We also note in passing that turning the
adversarial objective (2) into a regularized objective (3) is
a commonly adopted technique, and their relationship has
been studied by, e.g., Shafieezadeh-Abadeh et al. (2017).

2.1. Optimization
Since the objective (3) intrinsically couples all nodes, we
apply ADAM to find the optimal θ (Kingma & Ba, 2015),
using the entire dataset as the mini-batch. The major com-
plexity stems from∇θRθ(H(1)), which can be readily com-
puted using the Danskin’s theorem (Bertsekas, 1995). To
this end, we first simplify (4) into

Rθ(H(1)) = max
ζ

∥∥∥ÃζW(2)
∥∥∥2
F

s.t. ‖ζi:‖ ≤ ε. (5)

citeseer cora pubmed
GCN 70.9 ± .5 81.4 ± .4 79.0 ± .4

FastGCN 68.8 ± .6 79.8 ± .3 77.4 ± .3
SGCN 70.8 ± .1 81.7 ± .5 79.0 ± .4
SGC 71.9 ± .1 81.0 ± .0 78.9 ± .0

LAT-GCN 72.1 ± .4 82.3 ± .3 78.8 ± .7

Table 1. Test accuracy for different models
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Figure 2. Test accuracy of GCN and LAT-GCN on Cora under
varied size of training data.

Once we find the optimal ζ∗, the gradient in θ is simply

∇θ

∥∥∥Ãζ∗W(2)
∥∥∥2
F

. To find ζ, note that the gradient in ζ is

∇ζ tr(ÃζWζ>Ã>) =
(
W>ζ + Wζ>

)
ÃÃ>, (6)

where W = W(2)W(2)>. Although the constraint ‖ζi:‖ ≤
ε is convex and projection to it is trivial, the objective max-
imizes a convex function. So we simply use ADAM to
approximately solve for ζ. The empirical results show that
the additional optimization won’t cost too much energy. For
example, the walltime of each epoch on Cora dataset, which
has less than 3000 nodes, would increase from 0.3 to 0.7
seconds on average, with 8-core CPU only. The overall
procedure is summarized in Algorithm 1.

3. Experiments
We tested the performance of LAT-GCN on a range of stan-
dard citation datasets for node classification, including Cite-
seer, Cora, pubmed (Sen et al., 2008), cora ml, dblp, and
polblogs. The competing baselines include the vanilla GCN,
FastGCN (Chen et al., 2018), SGCN (Chen et al., 2017), and
SGC (Wu et al., 2019). All hyperparameters in respective
models follow from the original implementation, including
step size, width of layers, etc. Since the optimal objective
value in (5) is quadratic in ε, only the value of γε2 matters
for LAT-GCN. So we fixed γ = 0.1, and only tuned ε.

Finally, all algorithms are applied in a tranductive setting,
where the graph is constructed by combining the nodes
for training and testing. Accordingly, the perturbation ζ is
applied to both training and test nodes in (4).

Comparison of accuracy. We first compared the test ac-
curacy as shown in Table 1. Each test is based on randomly
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Figure 3. Test accuracy of LAT-GCN on Cora as a function of ε

Algorithm 2 Evaluation of Robustness
input A,X,∆ (budget of Nettack)
sGCN = sLAT-GCN = 0
T := sample 100 nodes from test set to attack
for u∈T (target of attack) & g∈{GCN,LAT-GCN} do
cg := evaluate(u, g(A,X))
if cg = ctrue then
A′,X′ ← Nettack(A,X, u,∆)
sg := sg + δ(cg 6= evaluate(u, g(A′,X′)))

output success rates: sGCN/ |T | , sLAT-GCN/ |T |.

partitioning the nodes into training and testing for 20 times.
Clearly, LAT-GCN delivers higher or similar accuracy com-
pared with all the competing algorithms. Figure 2 compares
LAT-GCN with GCN under varied size of training data from
Cora, with another 10% for validation and the remaining
nodes used for testing. It can be observed that LAT-GCN has
better or competitive performance with the original GCN.

In order to study the influence of ε on the performance of
LAT-GCN, we plotted in Figure 3 how the test accuracy
changes with the value of ε. We again used the Cora dataset
with 10% for training. Interestingly, the accuracy tends to
increase as ε grows from 0 to 0.17, and then drops as ε grows
further. This is consistent with the observation in (Stutz
et al., 2019) where robustness is shown to be positively
correlated with generalization, as long as the data points are
not perturbed away from the latent manifold. More detailed
results on other training sizes and on the Citeseer dataset
are available in Appendix A (Figures 7 and 8).
Comparison of robustness. We next evaluated the ro-
bustness of LAT-GCN under Nettack, an evasion attack
proposed by Zügner et al. (2018). A description of Net-
tack is available in Appendix A. The metric is the success
rate across four datasets, with 100 randomly sampled nodes
from the test set used as the attack target. Since Nettack
can either attack structure only, or attack both structure and
feature X, we will refer to our results as LAT-GCN-A and
LAT-GCN-AX, respectively. ε is set to 0.1 for LAT-GCN.

We first compared GCN with LAT-GCN when the pertur-
bation budget ∆ for Nettack was increased from 1 to 10.
The test procedure is detailed in Algorithm 2. As shown
in Figure 4 for Cora, LAT-GCN enjoys significantly lower
success rate than GCN under the two different attack strate-
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Figure 4. Success rate on Cora with increasing value of ∆
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Figure 5. Success rate under varied training size in percentage
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Figure 6. Success rate on Cora with varied test set size. 10% of the
dataset was used for validation and the remaining for training.

gies. We did not compare with other variants because none
of them is designed for defending against structural attacks.

The success rates on other datasets are provided in Figure
5, where the training set size is increased from 10% to 80%.
Here we sampled 100 nodes from the test set to attack one
after one. Finally, in order to study the influence of test set
size, Figure 6 shows the success rate on Cora when the test
set size is varied in 5%, 10%, and 20%, and all test nodes
were targeted for attack. In both figures, the budget ∆ was
set to the degree of each targeted node. Clearly, LAT-GCN
is significantly more robust than GCN.

Conclusion In this work, we proposed a new regulariza-
tion technique for GCN which not only improves general-
ization, but also defends against attacks in both node feature
and graph structure. The method, which is based on perturb-
ing latent representations, can be extended to adversarial
learning in dynamic graphs and multi-modality graphs.
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Appendix A
Nettack

Nettack is the adversarial attack on graphs specifically de-
signed for graph convolutional networks. The goal is to
perform small perturbations on graph G = (A,X), leading
to the new graph G′ = (A′,X′), such that the classifica-
tion performance drops. The nettack limits the number of
allowed changes by a budget:∑

u

∑
i

∣∣∣X(0)
ui −X′ui

∣∣∣+
∑
u<v

∣∣∣A(0)
uv −A′uv

∣∣∣ ≤ ∆

In order to solve a discrete problem, they introduced the
surrogate model, which is a linearized version of GCN,

Ls(A,X;W, vo) = max
c6=co

[
Â2XW

]
vo,c
−
[
Â2XW

]
vo,co

,

and aim to solve argmax(A′,X′) Ls(A
′,X′;W, vo), where

vo is the target node, and co is the original label of vo.

However, this problem is still intractable to solve due
to the discrete domain. To simplify, they define scoring
functions that evaluate the surrogate loss obtained after
adding/deleting a feature or edge. More specifically, they
are:

Sstruct(e;G, vo) := Ls(A
′,X;W, vo),

Sfeature(f ;G, vo) := Ls(A,X
′;W, vo).

Hyperparameters

We examine how the hyperparameter ε affects the ac-
curacy on the test set, under varied training set size in
{10%, 20%, 30%, 40%}. The results for Cora and Citeseer
are in Figures 7 and 8, respectively.



Latent Adversarial Training of Graph Convolution Networks

0.0 0.2 0.4

0.83

0.84

Ac
cu

ra
cy

10%

0.0 0.2 0.4

0.84

0.85

0.86

Ac
cu

ra
cy

20%

0.0 0.2 0.4
0.860

0.865

0.870

Ac
cu

ra
cy

30%

0.0 0.2 0.4

0.87

0.88

Ac
cu

ra
cy

40%

0.0 0.2 0.4
0.86

0.87

0.88

Ac
cu

ra
cy

50%

0.0 0.2 0.4
0.86

0.87

0.88

Ac
cu

ra
cy

60%

0.0 0.2 0.4

0.88

0.90
Ac

cu
ra

cy

70%

0.0 0.2 0.4

0.84

0.85

0.86

Ac
cu

ra
cy

80%

Figure 7. Test accuracy of LAT-GCN on Cora as a function of ε, over different sizes of training data.
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Figure 8. Test accuracy of LAT-GCN on Citeseer as a function of ε, over different sizes of training data.


