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Abstract
Most research in reading comprehension has fo-
cused on answering questions based on individual
documents or even single paragraphs. We intro-
duce a neural model which integrates and reasons
relying on information spread within documents
and across multiple documents. We frame it as
an inference problem on a graph. Mentions of
entities are nodes of this graph while edges en-
code relations between different mentions (e.g.,
within- and cross-document coreference). Graph
convolutional networks (GCNs) are applied to
these graphs and trained to perform multi-step rea-
soning. Our Entity-GCN method is scalable and
compact, and it achieves state-of-the-art results
on a multi-document question answering dataset,
WIKIHOP (Welbl et al., 2018).

1. Introduction
Recently, it has been observed that most questions in recent
question-answering datasets such as SQuAD (Rajpurkar
et al., 2016) and CNN/Daily Mail (Hermann et al., 2015)
do not require reasoning across the document, but they can
be answered relying on information contained in a single
sentence (Weissenborn et al., 2017). The last generation
of large-scale reading comprehension datasets, such as a
NarrativeQA (Kocisky et al., 2018), TriviaQA (Joshi et al.,
2017), and RACE (Lai et al., 2017), have been created in
such a way as to address this shortcoming and to ensure that
systems relying only on local information cannot achieve
competitive performance. Even though these new datasets
are challenging and require reasoning within documents,
many question answering and search applications require
aggregation of information across multiple documents. The
WIKIHOP dataset (Welbl et al., 2018) was explicitly created
to facilitate the development of systems dealing with these
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query: country Thorildsplan 
candidates: {Denmark, Finland, Sweden, Italy, ...} 
answer: Sweden 

Thorildsplan is a small park in Kristineberg in  
Stockholm, named in 1925 after the writer [..]

Stockholm is the capital of Sweden  
and the most populous city in [..]

Figure 1. A sample from WIKIHOP where multi-step reasoning
and information combination from different documents is neces-
sary to infer the correct answer.

scenarios. Each example in WIKIHOP consists of a collec-
tion of documents, a query and a set of candidate answers
(Figure 1). Though there is no guarantee that a question
cannot be answered by relying just on a single sentence,
the authors ensure that it is answerable using a chain of
reasoning crossing document boundaries.

The methods reported by Welbl et al. (2018) approach the
task by merely concatenating all documents into a single
long text and training a standard RNN-based reading com-
prehension model, namely, BiDAF (Seo et al., 2016) and
FastQA (Weissenborn et al., 2017). Instead, we frame ques-
tion answering as an inference problem on a graph represent-
ing the document collection. Nodes in this graph correspond
to named entities in a document whereas edges encode re-
lations between them (e.g., cross- and within-document
coreference links or simply co-occurrence in a document).
We assume that reasoning chains can be captured by prop-
agating local contextual information along edges in this
graph using a graph convolutional network (GCN) (Kipf &
Welling, 2017).

The multi-document setting imposes scalability challenges.
In our approach, only a small query encoder, the GCN lay-
ers and a simple feed-forward answer selection component
are learned. Instead of training RNN encoders, we use
contextualized embeddings (ELMo) to obtain initial (local)
representations of nodes (Peters et al., 2018). This implies
that only a lightweight computation has to be performed
online, both at train and test time, whereas the rest is prepro-
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cessed. Even in the somewhat contrived WIKIHOP setting,
where fairly small sets of candidates are provided, the model
is at least 5 times faster to train than BiDAF.1

Our contributions can be summarized as follows:

• we present a novel approach for multi-hop QA that
relies on a (pre-trained) document encoder and infor-
mation propagation across multiple documents using
graph neural networks;

• we provide an efficient training technique which relies
on a slower offline and a faster on-line computation
that does not require expensive document processing;

• we empirically show that our algorithm is effective,
presenting an improvement over previous results.

2. Method
2.1. Dataset and task abstraction

Data The WIKIHOP dataset comprises of tuples
〈q, Sq, Cq, a

?〉 where: q is a query/question, Sq is a set
of supporting documents, Cq is a set of candidate answers
(all of which are entities mentioned in Sq), and a? ∈ Cq

is the entity that correctly answers the question. WIKI-
HOP is assembled assuming that there exists a corpus and
a knowledge base (KB) related to each other. The KB
contains triples 〈s, r, o〉 where s is a subject entity, o an
object entity, and r a unidirectional relation between them.
Welbl et al. (2018) used WIKIPEDIA as corpus and WIKI-
DATA (Vrandečić, 2012) as KB. The KB is only used for
constructing WIKIHOP: Welbl et al. (2018) retrieved the
supporting documents Sq from the corpus looking at men-
tions of subject and object entities in the text. Note that the
set Sq (not the KB) is provided to the QA system, and not all
of the supporting documents are relevant for the query but
some of them act as distractors. Queries, on the other hand,
are not expressed in natural language, but instead consist of
tuples 〈s, r, ?〉 where the object entity is unknown and it has
to be inferred by reading the support documents. Therefore,
answering a query corresponds to finding the entity a? that
is the object of a tuple in the KB with subject s and relation
r among the provided set of candidate answers Cq .

Task The goal is to learn a model that can identify the
correct answer a? from the set of supporting documents Sq .
We use the available supervision to train a neural network
that computes scores for candidates in Cq . We estimate the
parameters of the architecture by maximizing the likelihood
of observations. For prediction, we then output the candi-

1When compared to the ‘small’ and hence fast BiDAF model
reported in Welbl et al. (2018), which is 25% less accurate than our
Entity-GCN. Larger RNN models are problematic also because of
GPU memory constraints.

date that achieves the highest probability. In the following,
we present our model discussing the design decisions that
enable multi-step reasoning and an efficient computation.

2.2. Reasoning on an entity graph

Entity graph In an offline step, we organize the content
of each training instance in a graph connecting mentions of
candidate answers within and across supporting documents.
For a given query q = 〈s, r, ?〉, we identify mentions in Sq

of the entities in Cq ∪ {s} and create one node per mention.
This process is based on the following heuristic:

1. we consider mentions spans in Sq exactly matching
an element of Cq ∪ {s}. Admittedly, this is a rather
simple strategy which may suffer from low recall.

2. we use predictions from a coreference resolution sys-
tem to add mentions of elements in Cq ∪ {s} be-
yond exact matching (including both noun phrases
and anaphoric pronouns). In particular, we use the
end-to-end coreference resolution by Lee et al. (2017).

3. we discard mentions which are ambiguously resolved
to multiple coreference chains; this may sacrifice recall,
but avoids propagating ambiguity.

To each node vi, we associate a continuous annotation
xi ∈ RD which represents an entity in the context where it
was mentioned (details in Section 2.3). We then proceed to
connect these mentions i) if they co-occur within the same
document (we will refer to this as DOC-BASED edges), ii)
if the pair of named entity mentions is identical (MATCH
edges—these may connect nodes across and within doc-
uments), or iii) if they are in the same coreference chain,
as predicted by the external coreference system (COREF
edges). Note that MATCH edges when connecting mentions
in the same document are mostly included in the set of
edges predicted by the coreference system. Having the two
types of edges lets us distinguish between less reliable edges
provided by the coreference system and more reliable (but
also more sparse) edges given by the exact-match heuristic.
We treat these three types of connections as three different
types of relations. See Figure 2 for an illustration. In addi-
tion to that, and to prevent having disconnected graphs, we
add a fourth type of relation (COMPLEMENT edge) between
any two nodes that are not connected with any of the other
relations.

Multi-step reasoning Our model then approaches multi-
step reasoning by transforming node representations (Sec-
tion 2.3 for details) with a differentiable message passing
algorithm that propagates information through the entity
graph. The algorithm is parameterized by a graph convolu-
tional network (GCN) (Kipf & Welling, 2017), in particu-
lar, we employ relational-GCNs (Schlichtkrull et al., 2018),
an extended version that accommodates edges of different
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USA

New York

NYC

New York

de Blasio

Figure 2. Two supporting documents where mentions are orga-
nized as a graph. Nodes are connected by three simple relations:
one indicating co-occurrence in the same document (solid edges),
another connecting mentions that exactly match (dashed edges),
and a third one indicating a coreference (dashed red line).

types. In Section 2.4 we describe the propagation rule.

Each step of the algorithm (also referred to as a hop) updates
all node representations in parallel. In particular, a node is
updated as a function of messages from its direct neighbours,
and a message is possibly specific to a certain relation. At
the end of the first step, every node is aware of every other
node it connects directly to. Besides, the neighbourhood of
a node may include mentions of the same entity as well as
others (e.g., same-document relation), and these mentions
may have occurred in different documents. Taking this
idea recursively, each further step of the algorithm allows a
node to indirectly interact with nodes already known to their
neighbours. After L layers of R-GCN, information has been
propagated through paths connecting up to L+ 1 nodes.

We start with node representations {h(0)
i }Ni=1, and transform

them by applying L layers of R-GCN obtaining {h(L)
i }Ni=1.

Together with a representation q of the query, we define
a distribution over candidate answers and we train maxi-
mizing the likelihood of observations. The probability of
selecting a candidate c ∈ Cq as an answer is then

P (c|q, Cq, Sq) ∝ exp

(
max
i∈Mc

fo([q,h
(L)
i ])

)
, (1)

where fo is a parameterized affine transformation, andMc

is the set of node indices such that i ∈Mc only if node vi
is a mention of c. The max operator in Equation 1 is nec-
essary to select the node with highest predicted probability
since a candidate answer is realized in multiple locations
via different nodes.

2.3. Node annotations

Keeping in mind we want an efficient model, we encode
words in supporting documents and in the query using only
a pre-trained model for contextualized word representations
rather than training our own encoder. Specifically, we use
ELMo2 (Peters et al., 2018), a pre-trained bi-directional
language model that relies on character-based input repre-

2The use of ELMo is an implementation choice, and, in princi-
ple, any other contextual pre-trained model could be used.

sentation. ELMo representations, differently from other
pre-trained word-based models (e.g., word2vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014)), are con-
textualized since each token representation depends on the
entire text excerpt (i.e., the whole sentence). We choose
not to fine tune nor propagate gradients through the ELMo
architecture, as it would have defied the goal of not having
specialized RNN encoders.

Documents pre-processing ELMo encodings are used to
produce a set of representations {xi}Ni=1, where xi ∈ RD

denotes the ith candidate mention in context. Note that
these representations do not depend on the query yet and
no trainable model was used to process the documents so
far, that is, we use ELMo as a fixed pre-trained encoder.
Therefore, we can pre-compute representation of mentions
once and store them for later use.

Query-dependent mention encodings ELMo is used to
produce a query representation q ∈ RK as well. Here, q
is a concatenation of the final outputs from a bidirectional
RNN layer trained to re-encode ELMo representations of
words in the query. The vector q is used to compute a
query-dependent representation of mentions {x̂i}Ni=1 as well
as to compute a probability distribution over candidates
(as in Equation 1). Query-dependent mention encodings
x̂i = fx(q,xi) are generated by a trainable function fx
which is parameterized by a feed-forward neural network.

2.4. Entity relational graph convolutional network

Our model uses a gated version of the original R-GCN
propagation rule. At the first layer, all hidden node rep-
resentation are initialized with the query-aware encodings
h
(0)
i = x̂i. Then, at each layer 0 ≤ ` ≤ L, the update

message u(`)
i to the ith node is a sum of a transformation fs

of the current node representation h
(`)
i and transformations

of its neighbours:

u
(`)
i = fs(h

(`)
i ) +

1

|Ni|
∑
j∈Ni

∑
r∈Rij

fr(h
(`)
j ) , (2)

where Ni is the set of indices of nodes neighbouring the ith
node,Rij is the set of edge annotations between i and j, and
fr is a parametrized function specific to an edge type r ∈
R. Recall the available relations from Section 2.2, namely,
R = {DOC-BASED, MATCH, COREF, COMPLEMENT}.

A gating mechanism regulates how much of the update mes-
sage propagates to the next step. This provides the model
a way to prevent completely overwriting past information.
Indeed, if all necessary information to answer a question
is present at a layer which is not the last, then the model
should learn to stop using neighbouring information for the
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next steps. Gate levels are computed as

a
(`)
i = σ

(
fa

(
[u

(`)
i ,h

(`)
i ]
))

, (3)

where σ(·) is the sigmoid function and fa a parametrized
transformation. Ultimately, the updated representation is
a gated combination of the previous representation and a
non-linear transformation of the update message:

h
(`+1)
i = φ(u

(`)
i )� a

(`)
i + h

(`)
i � (1− a

(`)
i ) , (4)

where φ(·) is any nonlinear function (we used tanh) and �
stands for element-wise multiplication. All transformations
f∗ are affine and they are not layer-dependent (since we
would like to use as few parameters as possible to decrease
model complexity promoting efficiency and scalability).

3. Experiments
We compare our method against recent work using the
WIKIHOP dataset (Welbl et al., 2018). See Appendix A
in the supplementary material for a description of the hyper-
parameters of our model and training details. The WIKIHOP
test set is not publicly available and therefore we measure
performance on the validation set in almost all experiments.
WIKIHOP comes in two versions, a standard (unmasked)
one and a masked one. The standard setting for testing is
the unmasked version and we report results on that. See
Appendix B and C in the supplementary material for an
ablation study and error analysis.

Results We present test and development results (when
present) in Table 1. From Welbl et al. (2018), we list an
oracle based on human performance as well as two standard
reading comprehension models, namely BiDAF (Seo et al.,
2016) and FastQA (Weissenborn et al., 2017). We also
compare against Coref-GRU (Dhingra et al., 2018), MH-
PGM (Bauer et al., 2018), and Weaver (Raison et al., 2018).
Additionally, we include results of MHQA-GRN (Song
et al., 2018), from a recent arXiv preprint describing con-
current work. They jointly train graph neural networks and
recurrent encoders. We report single runs of our two best
single models and an ensemble one on the unmasked test set
(recall that the test set is not publicly available and the task
organizers only report unmasked results) as well as both
versions of the validation set.

Entity-GCN (best single model without coreference edges)
outperforms all previous work by over 2% points. We ad-
ditionally re-ran BiDAF baseline to compare training time:
when using a single Titan X GPU, BiDAF and Entity-GCN
process 12.5 and 57.8 document sets per second, respec-
tively. Note that Welbl et al. (2018) had to use BiDAF with
very small state dimensionalities (20), and smaller batch
size due to the scalability issues (both memory and com-
putation costs). We compare applying the same reductions.

Model Test Dev

Human (Welbl et al., 2018) 74.1 –
FastQA (Welbl et al., 2018) 25.7 –
BiDAF (Welbl et al., 2018) 42.9 –
Coref-GRU (Dhingra et al., 2018) 59.3 56.0
MHPGM (Bauer et al., 2018) – 58.2
Weaver / Jenga (Raison et al., 2018) 65.3 64.1
MHQA-GRN (Song et al., 2018) 65.4 62.8

Entity-GCN w/o coref. (single model) 67.6 64.8
Entity-GCN w/ coref. (single model) 66.4 65.3
Entity-GCN w/ coref. (ensemble) 71.2 68.5

Table 1. Accuracy of different models on WIKIHOP closed test
set and public validation set. Our Entity-GCN outperforms recent
prior work without learning any language model to process the in-
put but relying on a pre-trained one (ELMo – without fine-tunning
it) and applying R-GCN to reason among entities in the text.

Eventually, we also report an ensemble of 5 independently
trained models. The ensemble prediction is obtained as
argmaxc

∏5
i=1 Pi(c|q, Cq, Sq) from each model. Note that

due to the documents pre-processing, we need to run ELMo
only once. At test time, the running time of Entity-GCN is
negligible compare to ELMo.

4. Related work
In previous work, BiDAF (Seo et al., 2016), FastQA (Weis-
senborn et al., 2017), Coref-GRU (Dhingra et al., 2018),
MHPGM (Bauer et al., 2018), and Weaver / Jenga (Raison
et al., 2018) have been applied to multi-document question
answering. The first two mainly focus on single document
QA and Welbl et al. (2018) adapted both of them to work
with WIKIHOP. They process each instance of the dataset
by concatenating all d ∈ Sq in a random order adding
document separator tokens. They trained using the first an-
swer mention in the concatenated document and evaluating
exact match at test time. Coref-GRU, similarly to us, en-
codes relations between entity mentions in the document.
Instead of using graph neural network layers, as we do, they
augment RNNs with jump links corresponding to pairs of
corefereed mentions. MHPGM uses a multi-attention mech-
anism in combination with external commonsense relations
to perform multiple hops of reasoning. Weaver is a deep
co-encoding model that uses several alternating bi-LSTMs
to process the concatenated documents and the query. Our
work and unpublished concurrent work by Song et al. (2018)
are the first to study graph neural networks in the context of
multi-document QA. Besides differences in the architecture,
Song et al. (2018) propose to train a combination of a graph
recurrent network and an RNN encoder. We do not train any
RNN document encoders in this work.
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A. Implementation and experiments details
A.1. Architecture

See table 2 for an outline of Entity-GCN architectural detail.
Here the computational steps

1. ELMo embeddings are a concatenation of three 1024-
dimensional vectors resulting in 3072-dimensional in-
put vectors {xi}Ni=1.

2. For the query representation q, we apply 2 bi-LSTM
layers of 256 and 128 hidden units to its ELMo vectors.
The concatenation of the forward and backward states
results in a 256-dimensional question representation.

3. ELMo embeddings of candidates are projected to 256-
dimensional vectors, concatenated to the q, and further
transformed with a two layers MLP of 1024 and 512
hidden units in 512-dimensional query aware entity
representations {x̂i}Ni=1 ∈ R512.

4. All transformations f∗ in R-GCN-layers are affine and
they do maintain the input and output dimensionality
of node representations the same (512-dimensional).

5. Eventually, a 2-layers MLP with [256, 128] hidden
units takes the concatenation between {h(L)

i }Ni=1 and
q to predict the probability that a candidate node vi
may be the answer to the query q (see Equation 1).

During preliminary trials, we experimented with different
numbers of R-GCN-layers (in the range 1-7). We observed
that with WIKIHOP, for L ≥ 3 models reach essentially
the same performance, but more layers increase the time
required to train them. Besides, we observed that the gating
mechanism learns to keep more and more information from
the past at each layer making unnecessary to have more
layers than required.

A.2. Training details

We train our models with a batch size of 32 for at most 20
epochs using the Adam optimizer (Kingma & Ba, 2015)
with β1 = 0.9, β2 = 0.999 and a learning rate of 10−4.
To help against overfitting, we employ dropout (drop rate
∈ 0, 0.1, 0.15, 0.2, 0.25) (Srivastava et al., 2014) and early-
stopping on validation accuracy. We report the best results
of each experiment based on accuracy on validation set.

B. Ablation study
To help determine the sources of improvements, we perform
an ablation study using the publicly available validation
set (see Table 3). We perform two groups of ablation, one
on the embedding layer, to study the effect of ELMo, and

one on the edges, to study how different relations affect the
overall model performance.

Embedding ablation We argue that ELMo is crucial,
since we do not rely on any other context encoder. However,
it is interesting to explore how our R-GCN performs with-
out it. Therefore, in this experiment, we replace the deep
contextualized embeddings of both the query and the nodes
with GloVe (Pennington et al., 2014) vectors (insensitive
to context). Since we do not have any component in our
model that processes the documents, we expect a drop in
performance. In other words, in this ablation our model
tries to answer questions without reading the context at all.
For example, in Figure 1, our model would be aware that
“Stockholm” and “Sweden” appear in the same document
but any context words, including the ones encoding rela-
tions (e.g., “is the capital of”) will be hidden. Besides, in
the masked case all mentions become ‘unknown’ tokens
with GloVe and therefore the predictions are equivalent to a
random guess. Once the strong pre-trained encoder is out of
the way, we also ablate the use of our R-GCN component,
thus completely depriving the model from inductive biases
that aim at multi-hop reasoning.

The first important observation is that replacing ELMo by
GloVe (GloVe with R-GCN in Table 3) still yields a com-
petitive system that ranks far above baselines from (Welbl
et al., 2018) and even above the Coref-GRU of Dhingra et al.
(2018), in terms of accuracy on (unmasked) validation set.
The second important observation is that if we then remove
R-GCN (GloVe w/o R-GCN in Table 3), we lose 8.0 points.
That is, the R-GCN component pushes the model to perform
above Coref-GRU still without accessing context, but rather
by updating mention representations based on their relation
to other ones. These results highlight the impact of our
R-GCN component.

Graph edges ablation In this experiment we investigate
the effect of the different relations available in the entity
graph and processed by the R-GCN module. We start off
by testing our stronger encoder (i.e., ELMo) in absence of
edges connecting mentions in the supporting documents
(i.e., using only self-loops – No R-GCN in Table 3). The
results suggest that WIKIPHOP genuinely requires multi-
hop inference, as our best model is 6.1% and 8.4% more
accurate than this local model, in unmasked and masked
settings, respectively.3 However, it also shows that ELMo
representations capture predictive context features, without
being explicitly trained for the task. It confirms that our goal
of getting away with training expensive document encoders
is a realistic one.

3Recall that all models in the ensemble use the same local
representations, ELMo.
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Input - q, {vi}Ni=1

query ELMo 3072-dim candidates ELMo 3072-dim

2 layers bi-LSTM [256, 128]-dim 1 layer FF 256-dim

concatenation 512-dim

2 layer FF [1024, 512]-dim: : {x̂i}Ni=1

3 layers R-GCN 512-dim each (shared parameters)

concatenation with q 768-dim

3 layers FF [256,128,1]-dim

Output - probabilities over Cq

Table 2. Model architecture.

We then inspect our model’s effectiveness in making use
of the structure encoded in the graph. We start naively by
fully-connecting all nodes within and across documents
without distinguishing edges by type (No relation types in
Table 3). We observe only marginal improvements with
respect to ELMo alone (No R-GCN in Table 3) in both
the unmasked and masked setting suggesting that a GCN
operating over a naive entity graph would not add much to
this task and a more informative graph construction and/or
a more sophisticated parameterization is indeed needed.

Next, we ablate each type of relations independently, that
is, we either remove connections of mentions that co-occur
in the same document (DOC-BASED), connections between
mentions matching exactly (MATCH), or edges predicted by
the coreference system (COREF). The first thing to note is
that the model makes better use of DOC-BASED connec-
tions than MATCH or COREF connections. This is mostly be-

Model unmasked masked

full (ensemble) 68.5 71.6
full (single) 65.1 ± 0.11 70.4 ± 0.12

GloVe with R-GCN 59.2 11.1
GloVe w/o R-GCN 51.2 11.6

No R-GCN 62.4 63.2
No relation types 62.7 63.9
No DOC-BASED 62.9 65.8
No MATCH 64.3 67.4
No COREF 64.8 –
No COMPLEMENT 64.1 70.3
Induced edges 61.5 56.4

Table 3. Ablation study on WIKIHOP validation set. The full model
is our Entity-GCN with all of its components and other rows
indicate models trained without a component of interest. We also
report baselines using GloVe instead of ELMo with and without
R-GCN. For the full model we report mean±1 std over 5 runs.

cause i) the majority of the connections are indeed between
mentions in the same document, and ii) without connecting
mentions within the same document we remove important
information since the model is unaware they appear closely
in the document. Secondly, we notice that coreference links
and complement edges seem to play a more marginal role.
Though it may be surprising for coreference edges, recall
that the MATCH heuristic already captures the easiest coref-
erence cases, and for the rest the out-of-domain coreference
system may not be reliable. Still, modelling all these differ-
ent relations together gives our Entity-GCN a clear advan-
tage. This is our best system evaluating on the development.
Since Entity-GCN seems to gain little advantage using the
coreference system, we report test results both with and
without using it. Surprisingly, with coreference, we observe
performance degradation on the test set. It is likely that the
test documents are harder for the coreference system.4

We do perform one last ablation, namely, we replace our
heuristic for assigning edges and their labels by a model
component that predicts them. The last row of Table 3 (In-
duced edges) shows model performance when edges are not
predetermined but predicted. For this experiment, we use a
bilinear function fe(x̂i, x̂j) = σ

(
x̂>i Wex̂j

)
that predicts

the importance of a single edge connecting two nodes i, j
using the query-dependent representation of mentions (see
Section 2.3). The performance drops below ‘No R-GCN’
suggesting that it cannot learn these dependencies on its
own.

Most results are stronger for the masked settings even
though we do not apply the coreference resolution system in
this setting due to masking. It is not surprising as coreferred
mentions are labeled with the same identifier in the masked
version, even if their original surface forms did not match
(Welbl et al. (2018) used WIKIPEDIA links for masking).

4Since the test set is hidden from us, we cannot analyze this
difference further.
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Relation Accuracy P@2 P@5 Avg. |Cq| Supports

overall (ensemble) 68.5 81.0 94.1 20.4 ± 16.6 5129
overall (single model) 65.3 79.7 92.9 20.4 ± 16.6 5129

3 best
member of political party 85.5 95.7 98.6 5.4 ± 2.4 70
record label 83.0 93.6 99.3 12.4 ± 6.1 283
publisher 81.5 96.3 100.0 9.6 ± 5.1 54

3 worst
place of birth 51.0 67.2 86.8 27.2 ± 14.5 309
place of death 50.0 67.3 89.1 25.1 ± 14.3 159
inception 29.9 53.2 83.1 21.9 ± 11.0 77

Table 4. Accuracy and precision at K (P@K in the table) analysis overall and per query type. Avg. |Cq| indicates the average number of
candidates with one standard deviation.

Indeed, in the masked version, an entity is always referred
to via the same unique surface form (e.g., MASK1) within
and across documents. In the unmasked setting, on the
other hand, mentions to an entity may differ (e.g., “US” vs
“United States”) and they might not be retrieved by the coref-
erence system we are employing, making the task harder for
all models. Therefore, as we rely mostly on exact match-
ing when constructing our graph for the masked case, we
are more effective in recovering coreference links on the
masked rather than unmasked version.5

C. Error analysis
In this section we provide an error analysis for our best
single model predictions. First of all, we look at which
type of questions our model performs well or poorly. There
are more than 150 query types in the validation set but we
filtered the three with the best and with the worst accuracy
that have at least 50 supporting documents and at least 5
candidates. We show results in Table 4. We observe that
questions regarding places (birth and death) are considered
harder for Entity-GCN. We then inspect samples where our
model fails while assigning highest likelihood and noticed
two principal sources of failure i) a mismatch between what
is written in WIKIPEDIA and what is annotated in WIKI-
DATA, and ii) a different degree of granularity (e.g., born
in “London” vs “UK” could be considered both correct by
a human but not when measuring accuracy). In Table 5,
we report three samples from WIKIHOP development set
where out Entity-GCN fails. In particular, we show two
instances where our model presents high confidence on the
answer, and one where is not. We commented these samples
explaining why our model might fail in these cases.

Secondly, we study how the model performance degrades
when the input graph is large. In particular, we observe a

5Though other systems do not explicitly link matching men-
tions, they similarly benefit from masking (e.g., masks essentially
single out spans that contain candidate answers).

negative Pearson’s correlation (-0.687) between accuracy
and the number of candidate answers. However, the perfor-
mance does not decrease steeply. The distribution of the
number of candidates in the dataset peaks at 5 and has an
average of approximately 20. Therefore, the model does not
see many samples where there are a large number of can-
didate entities during training. Differently, we notice that
as the number of nodes in the graph increases, the model
performance drops but more gently (negative but closer to
zero Pearson’s correlation). This is important as document
sets can be large in practical applications. See Figure 3 for
plots.
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(a) Candidates set size (x-axis) and accuracy (y-axis). Pearson’s
correlation of −0.687 (p < 10−7).
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(b) Nodes set size (x-axis) and accuracy (y-axis). Pearson’s corre-
lation of −0.385 (p < 10−7).

Figure 3. Accuracy (blue) of our best single model with respect to the candidate set size (on the top) and nodes set size (on the bottom) on
the validation set. Re-scaled data distributions (orange) per number of candidate (top) and nodes (bottom). Dashed lines indicate average
accuracy.

ID WH dev 2257 Gold answer 2003 (p = 14.1)

Query inception (of) Derrty Entertainment Predicted answer 2000 (p = 15.8)

Support 1 Derrty Entertainment is a record label founded by [...]. The first album released under
Derrty Entertainment was Nelly ’s Country Grammar.

Support 2 Country Grammar is the debut single by American rapper Nelly. The song was pro-
duced by Jason Epperson. It was released in 2000, [...]

(a) In this example, the model predicts the answer correctly. However, there is a mismatch between what is written in WIKIPEDIA and
what is annotated in WIKIDATA. In WIKIHOP, answers are generated with WIKIDATA.

ID WH dev 2401 Gold answer Adolph Zukor (p = 7.1e−4%)

Query producer (of) Forbidden Paradise Predicted answer Jesse L. Lask (p = 99.9%)

Support 1 Forbidden Paradise is a [...] drama film produced by Famous Players-Lasky [...]

Support 2 Famous Players-Lasky Corporation was [...] from the merger of Adolph Zukor’s
Famous Players Film Company [..] and the Jesse L. Lasky Feature Play Company.

(b) In this sample, there is ambiguity between two entities since both are correct answers reading the passages but only one is marked as
correct. The model fails assigning very high probability to only on one of them.

ID WH dev 3030 Gold answer Scania (p = 0.029%)

Query place of birth (of) Erik Penser Predicted answer Eslöv (p = 97.3%)

Support 1 Nils Wilhelm Erik Penser (born August 22, 1942, in Eslöv, Skåne) is a Swedish [...]

Support 2 Skåne County, sometimes referred to as “ Scania County ” in English, is the [...]

(c) In this sample, there is ambiguity between two entities since the city Eslöv is located in the Scania County (English name of Skåne
County). The model assigning high probability to the city and it cannot select the county.

Table 5. Samples from WIKIHOP set where Entity-GCN fails. p indicates the predicted likelihood.


