
Batch Virtual Adversarial Training for Graph Convolutional Networks

Zhijie Deng 1 Yinpeng Dong 1 Jun Zhu 1

Abstract

We present batch virtual adversarial training
(BVAT), a novel regularization method for graph
convolutional networks (GCNs). BVAT addresses
the shortcoming of GCNs that do not consider
the smoothness of the model’s output distribution
against local perturbations around the input. We
propose two algorithms, sample-based BVAT and
optimization-based BVAT, which are suitable to
promote the smoothness of GCN classifiers by
generating virtual adversarial perturbations for ei-
ther a subset of nodes far from each other or all
nodes with an optimization process. Extensive
experiments on three citation network datasets
Cora, Citeseer and Pubmed and a knowledge
graph dataset Nell validate the effectiveness of
the proposed method, which establishes state-of-
the-art results in the semi-supervised node classi-
fication task.

1. Introduction
Recent neural network models for graph-structured data
(Kipf & Welling, 2017; Hamilton et al., 2017; Veličković
et al., 2018) demonstrate remarkable performance in the
semi-supervised node classification task. These methods
essentially adopt different aggregators to aggregate feature
information from the neighborhood of a node to obtain
node prediction. The aggregators promote the smoothness
between nodes in a neighborhood, which is helpful for semi-
supervised node classification based on the assumption that
connected nodes in the graph are likely to have similar repre-
sentations (Kipf & Welling, 2017). However, these methods
only consider the smoothness between nodes in a neigh-
borhood without considering the smoothness of the output
distribution of the node classifier. Previous works have con-
firmed that smoothing the output distribution of a classifier
(i.e., encouraging the classifier to produce similar outputs)

1Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center,
Tsinghua University, Beijing, 100084, China. Correspondence to:
Jun Zhu <dcszj@mail.tsinghua.edu.cn>.

Presented at the ICML 2019 Workshop on Learning and Reasoning
with Graph-Structured Data. Copyright 2019 by the author(s).

against local perturbations around the input can improve
its generalization performance in supervised and especially
semi-supervised learning (Wager et al., 2013; Sajjadi et al.,
2016; Laine & Aila, 2017; Miyato et al., 2018; Luo et al.,
2018). Moreover, it’s crucial to encourage the smoothness
of the output distribution of aggregator-based graph models
since the receptive field (e.g., Fig. 1a) of a single node grows
exponentially with respect to the number of aggregators in
the model (Chen & Zhu, 2017), and neural network models
tend to be non-smooth with such high dimensional input
space (Goodfellow et al., 2015; Peck et al., 2017). There-
fore, it is necessary to encourage the smoothness of the
output distribution of existing graph models.

Virtual adversarial training (VAT) (Miyato et al., 2018;
2017) is an effective regularization method to encourage
the smoothness of the output distribution of the classifier.
However, the straightforward extension of VAT to graph-
based classification models is less effective. The reason is
that graph-based classifiers predict a node u based on the
features of all nodes in its receptive field (i.e., RFu), as
shown in Fig. 1a, and consequently, the gradient of u’s loss
can be back propagated to all nodes in RFu. It means that
the virtual adversarial perturbation calculated for node u
will modify the features of every node in RFu. Thus, when
applying VAT into graph models and training with batch gra-
dient descent (Kipf & Welling, 2017) or stochastic gradient
descent (Hamilton et al., 2017; Chen & Zhu, 2017), once
the batch (or mini-batch) contains other nodes whose recep-
tive fields include u, the virtual adversarial perturbations
generated for u and those nodes overlap. As a result, the
overall perturbation for node u is actually not the worst-case
virtual adversarial perturbation, making VAT inefficient to
encourage the smoothness of the model’s output distribution
and unable to push decision boundaries of the model away
from real data instances effectively.

Given the aforementioned issue, we aim to generate virtual
adversarial perturbations perceiving the connectivity pat-
terns between nodes in the graph to promote the smooth-
ness of the node classifier’s output distribution. In this paper,
we propose batch virtual adversarial training (BVAT) algo-
rithms. Specifically, we focus on the typical and effective
graph convolutional networks (GCNs) (Kipf & Welling,
2017), and propose a sample-based BVAT algorithm (S-
BVAT) to craft local virtual adversarial perturbations for a

Batch Virtual Adversarial Training for Graph Convolutional Networks

(a) Receptive Field of node u

u

(b) Perturbations for nodes in S-BVAT (c) Perturbations for nodes in O-BVAT

u

v

Figure 1. (a) The receptive field (marked by red) of a node u in two-layer GCNs. (b) In S-BVAT, two nodes u and v are selected to
calculate the LDS loss, and the virtual adversarial perturbations are applied to the features in their receptive fields (marked by red and blue),
which do not have intersection. (c) In O-BVAT, all nodes are included to calculate the LDS loss and the virtual adversarial perturbations
for all nodes are optimized together.

subset of separable nodes and an optimization-based BVAT
algorithm (O-BVAT) that generates adversarial perturba-
tions at all nodes. BVAT exploits the high efficiency of
batch gradient descent in GCNs. To validate the effective-
ness of BVAT, we conduct experiments on four challenging
node classification benchmarks: Cora, Citeseer, Pubmed
citation datasets as well as a knowledge graph dataset Nell.
BVAT establishes state-of-the-art results across all datasets
with a tolerable additional computation complexity.

2. Related Work
Learning node representations based on graph for semi-
supervised learning and unsupervised learning has drawn
increasing attention and has been developed mainly toward
two directions: spectral approaches (Zhu et al., 2003; Belkin
et al., 2006; Weston et al., 2012; Defferrard et al., 2016;
Kipf & Welling, 2017) and non-spectral approaches (Per-
ozzi et al., 2014; Tang et al., 2015; Grover & Leskovec,
2016; Yang et al., 2016; Monti et al., 2017; Hamilton et al.,
2017; Veličković et al., 2018). There is also an interest in
applying regularization terms (Miyato et al., 2018; Laine &
Aila, 2017; Tarvainen & Valpola, 2017; Luo et al., 2018) to
semi-supervised learning based on the cluster assumption
(Chapelle & Zien, 2005). Among them, virtual adversar-
ial training (VAT) has been proved successful in various
domains (Miyato et al., 2017; 2018). However, VAT is
not effective enough when straightforwardly applied to the
models that deal with graph-structured data because of the
interrelationship between different nodes, as stated in Sec. 1.
Thus we propose a novel regularization BVAT to address this
issue. The works of adversarial attacks on graph-structure
data (Zügner et al., 2018; Dai et al., 2018) also share the
idea of considering the connectivity patterns of the graph
to generate adversarial perturbations, but our work focuses
more on semi-supervised node classification instead of per-
forming adversarial attacks.

3. Batch Virtual Adversarial Training
In this section, we first extend virtual adversarial training
(VAT) (Miyato et al., 2018) to graph convolutional networks
(GCNs) and discuss its shortcomings. We then propose the

batch virtual adversarial training (BVAT) algorithms which
are more suitable for GCNs.

3.1. Virtual Adversarial Training for Graph
Convolutional Networks

Virtual adversarial training (VAT) (Miyato et al., 2018) en-
courages the smoothness by training the model to be robust
against local worst-case virtual adversarial perturbation. In
VAT, the local distributional smoothness (LDS) is defined
by a virtual adversarial loss as

LDS(x,W, rvadv) = DKL

(
p(y|x, Ŵ)||p(y|x+rvadv,W)

)
,

(1)
where p(y|x,W) is the prediction distribution parameter-
ized byW (i.e., trainable parameters), DKL(·, ·) is the KL
divergence of two distributions, Ŵ denotes the current esti-
mation of the parametersW and rvadv is the virtual adver-
sarial perturbation found by

rvadv = argmax
r;||r||2≤ε

LDS(x,W, r)

= argmax
r;||r||2≤ε

DKL

(
p(y|x, Ŵ)||p(y|x+ r,W)

)
.

(2)

A straightforward extension into GCNs is using the average
LDS loss for all nodes as a regularization term

Rvadv(V,W) =
1

N

∑
u∈V

LDS(Xu,W, rvadv,u), (3)

where V denotes the node set of the graph containing N
elements and Xu is the input feature matrix of all nodes in
RFu. rvadv,u is the virtual adversarial perturbation matrix
for node u in the same size as Xu and is approximated
by the first dominant eigenvector of the Hessian matrix
of LDS(Xu,W, r) using a power iteration method with T
iterations (Miyato et al., 2018). The overall loss is

L = L0 + α · 1

|V|
∑
u∈V

E
(
p(y|Xu,W)

)
+ β · Rvadv(V,W),

(4)

where L0 is the average cross-entropy loss of all labeled
nodes and E(·) is the conditional entropy of a distribution,

Batch Virtual Adversarial Training for Graph Convolutional Networks

which is widely used in the semi-supervised classification
task (Grandvalet & Bengio, 2005) to encourage one-hot
predictions. α and β are coefficients for conditional entropy
and local distributional smoothness.

Notably, the interaction of nodes in the graph reduces the ef-
fectiveness of loss LDS(Xu,W, rvadv,u) since in the batch
training, the calculated rvadv,u is the accumulation of the
virtual adversarial perturbations generated for all nodes in
RFu. Therefore, ‖rvadv,u‖2 ≤ ε in Eq. (2) cannot be guar-
anteed and the resultant perturbations are not the worst-case
virtual adversarial perturbations.

3.2. Batch Virtual Adversarial Training

BVAT can perceive the connectivity patterns between nodes
and alleviate the interaction effect of virtual adversarial
perturbations crafted for all nodes by either stochastically
sampling a subset of nodes far from each other or adopting
a more powerful optimization process for generating virtual
adversarial perturbations. These two approaches are both
harmonious with the batch gradient descent optimization
method used by GCNs and only increase tolerable additional
computation complexity, as shown in Appendix D.

S-BVAT. The motivation of sample-based BVAT is that
we expect to make the model be aware of the relationship
between nodes and limit the propagation of adversarial per-
turbations to prevent perturbations from different nodes
interacting with each other. In S-BVAT, we generate virtual
adversarial perturbations for a subset VS ⊂ V of nodes,
whose receptive fields do not overlap with each other. Tak-
ing a K-layer GCN model for example, the receptive field
RFu of a node u contains all the k-hop neighbors of it where
0 ≤ k ≤ K. If we expect RFu doesn’t have intersection
with RFv , the number of nodes in the shortest path between
u and v (denoted as the distance Duv) should be at least 2K
(shown in Fig. 1b). Therefore, we randomly sample a subset
VS of nodes with a fixed size B (e.g., 100) as

VS = {u|u ∈ V}, s.t. |VS | = B, ∀u, v ∈ VS , Duv ≥ 2K.

In this way, the generated perturbations for nodes in VS do
not interact with each other. The regularization term for
training is the average LDS loss over nodes in VS as

Rvadv(VS ,W) =
1

B

∑
u∈VS

LDS(Xu,W, rvadv,u). (5)

Rvadv(VS ,W) can be seen as an approximate estimation of
Rvadv(V,W). The virtual adversarial perturbations for all
nodes in VS can be processed at the same time in the batch
gradient descent. As suggested by (Miyato et al., 2018) and
our experiments, one-step power iteration is sufficient for
approximating rvadv,u and obtaining high performance. We
summarize S-BVAT in Algorithm 1 in Appendix.

O-BVAT. In an alternative way, we propose to generate
virtual adversarial perturbations for all nodes in V by an
optimization process, which proves to be more powerful
in adversarial attacks than one-step gradient-based meth-
ods (Carlini & Wagner, 2017). We maximize the average
LDS loss with respect to the whole perturbation matrix R
corresponding to the whole feature matrix X so that the
neighborhood perturbations Ru (i.e., rvadv,u) of every node
u are adversarial enough. At the same time, we punish the
norm of R so that the perturbations are small enough.

Specifically, R is optimized by solving

max
R

1

N

∑
u∈V

DKL

(
p(y|Xu, Ŵ)||p(y|Xu +Ru,W)

)
− γ · ‖R‖2F , (6)

where ‖R‖F is the Frobenius norm of R which makes the
optimal perturbation have a small norm, and γ is a hyper-
parameter to balance the loss terms. We optimize R with
an Adam (Kingma & Ba, 2014) optimizer for T iterations.
The regularization term in O-BVAT is then the average LDS
loss over all nodes in V , similar to Eq. (3). We summarize
O-BVAT in Algorithm 2 in Appendix.

4. Experiments
We empirically evaluate the BVAT algorithms through ex-
periments on different datasets. Owing to promoting the
smoothness of the model’s output distribution, the BVAT
algorithms boost the performance of GCNs significantly
and achieve superior results on four popular benchmarks
against a wide variety of state-of-the-art methods, which
is detailed in Sec. 4.2. We implement BVAT based on the
official implementation of GCNs and the experimental setup
is detailed in Appendix B.

4.1. Effectiveness of BVAT

We evaluate the effectiveness of the BVAT algorithms by
assessing the virtual adversarial perturbations generated by
them for graph data. First, we train a vanilla GCN model
on Cora. Then, we use VAT, S-BVAT and O-BVAT to
manufacture virtual adversarial perturbations and calculate
the regularization termRvadv averaged on all the nodes V
(in VAT and O-BVAT) or a subset of nodes VS (in S-BVAT).
Rvadv indicates whether the perturbations are worst-case
locally adversarial or not. We plotRvadv in Fig. 2a.

It is clear that O-BVAT and S-BVAT achieve higherRvadv

values than VAT, which demonstrates that BVAT can find
virtual adversarial perturbations which are more likely to be
in the worst-case direction. For both S-BVAT and VAT, We
can observe a significant jump of theRvadv value when T
changes from 0 (random perturbations) to 1, but no much

Batch Virtual Adversarial Training for Graph Convolutional Networks

The number of optimization iterations T
0 1 2 3 4 5 6 7 8 9 10 11

R
va

dv

0.3

0.6

0.9

1.2
O-BVAT
S-BVAT
VAT

(a)

The number of optimization iterations T
0 1 2 3 4 5 6 7 8 9 10 11

R
va

dv

0.3

0.6

0.9

1.2
wo/ S-BVAT
w/ S-BVAT

(b)

The number of optimization iterations T
0 1 2 3 4 5 6 7 8 9 10 11

R
va

dv

0.3

0.6

0.9

1.2
wo/ O-BVAT
w/ O-BVAT

(c)

Figure 2. (a) Comparisons of Rvadv of VAT, S-BVAT and O-BVAT on a baseline GCN model. (b) Comparisons of Rvadv of S-BVAT on
models trained with and without S-BVAT. (c) Comparisons of Rvadv of O-BVAT on models trained with and without O-BVAT.

Table 1. Summary of node classification results in terms of test accuracy (%).

Method Cora Cireseer Pubmed Nell

ManiReg (Belkin et al., 2006) 59.5 60.1 70.7 21.8
SemiEmb (Weston et al., 2012) 59.0 59.6 71.1 26.7
LP (Zhu et al., 2003) 68.0 45.3 63.0 26.5
DeepWalk (Perozzi et al., 2014) 67.2 43.2 65.3 58.1
Planetoid (Yang et al., 2016) 75.7 64.7 77.2 61.9
Monet (Monti et al., 2017) 81.7 ± 0.5 – 78.8 ± 0.3 –
GAT (Veličković et al., 2018) 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 –
GPNN (Liao et al., 2018) 81.8 69.7 79.3 63.9

GCN (Kipf & Welling, 2017) 81.5 70.3 79.0 66.0
GCN w/ random perturbations 82.3 ± 2.0 71.4 ± 1.9 79.2 ± 0.6 65.9 ± 1.0

GCN w/ VAT 82.8 ± 0.8 73.0 ± 0.7 79.5 ± 0.3 66.0 ± 1.1
GCN w/ S-BVAT 83.4 ± 0.6 73.1 ± 1.3 79.6 ± 0.5 66.0 ± 0.9
GCN w/ O-BVAT 83.6 ± 0.5 74.0 ± 0.6 79.9 ± 0.4 67.1 ± 0.6

more with larger T . Therefore we set T = 1 in VAT and
S-BVAT. However,Rvadv of O-BVAT increases monotoni-
cally with respect to T and converges at about 10 steps, so
we set T = 10 in the following experiments.

On the other hand, we compare the robustness (i.e., smooth-
ness in the worst-case direction) of the models trained with
S-BVAT/O-BVAT with that of the models trained without
S-BVAT/O-BVAT by calculating theRvadv values. Fig. 2b
and 2c show the results respectively. The models trained
with BVAT (S-BVAT or O-BVAT) have lower Rvadv val-
ues than the vanilla GCN models, which indicates that the
models trained with BVAT are more robust against the ad-
versarial perturbations and more smooth in the input space.

4.2. Semi-supervised Node Classification

To empirically validate the effectiveness of smoothing out-
put distribution, we deploy BVAT and VAT algorithms for
semi-supervised node classification on the Cora, Citeseer,
Pubmed and Nell, and compare with state-of-the-art meth-
ods in Table 1. We also train a GCN model with random
input perturbations as a baseline. We report the averaged

results of 10 runs with different random seeds.

The proposed GCNs with VAT, GCNs with S-BVAT and
GCNs with O-BVAT all outperform the vanilla GCNs and
GCNs trained with random input perturbations by a large
margin across all the four datasets. Furthermore, as ex-
pected, O-BVAT boosts the performance significantly and
establishes state-of-the-art results. O-BVAT uses the LDS
loss on all nodes, which may be more efficient than that on
a subset of nodes used by S-BVAT.

5. Conclusion
In this paper, we proposed batch virtual adversarial train-
ing algorithms, which can smooth the output distribution
of graph-based classifiers and are essentially suitable for
any aggregator-based graph neural networks. In particu-
lar, we presented sample-based batch virtual adversarial
training and optimization-based virtual adversarial training
algorithms respectively. Experimental results demonstrate
the effectiveness of them on various datasets in the semi-
supervised node classification task. BVAT outperforms the
current state-of-the-art methods by a large margin.

Batch Virtual Adversarial Training for Graph Convolutional Networks

References
Belkin, M., Niyogi, P., and Sindhwani, V. Manifold regular-

ization: A geometric framework for learning from labeled
and unlabeled examples. Journal of machine learning
research, 7(Nov):2399–2434, 2006.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In Security and Privacy (SP),
2017 IEEE Symposium on, pp. 39–57. IEEE, 2017.

Chapelle, O. and Zien, A. Semi-supervised classification by
low density separation. In AISTATS, pp. 57–64. Citeseer,
2005.

Chen, J. and Zhu, J. Stochastic training of graph convolu-
tional networks. arXiv preprint arXiv:1710.10568, 2017.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and
Song, L. Adversarial attack on graph structured data.
arXiv preprint arXiv:1806.02371, 2018.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information
Processing Systems (NIPS), pp. 3844–3852, 2016.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations (ICLR), 2015.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning by
entropy minimization. In Advances in Neural Information
Processing Systems (NIPS), pp. 529–536, 2005.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM, 2016.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems (NIPS), pp. 1025–1035,
2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. In International Conference on
Learning Representations (ICLR), 2017.

Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A. L., Ur-
tasun, R., and Zemel, R. Graph partition neural net-
works for semi-supervised classification. arXiv preprint
arXiv:1803.06272, 2018.

Luo, Y., Zhu, J., Li, M., Ren, Y., and Zhang, B. Smooth
neighbors on teacher graphs for semi-supervised learning.
In Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018.

Miyato, T., Dai, A. M., and Goodfellow, I. Adversarial
training methods for semi-supervised text classification.
In International Conference on Learning Representations
(ICLR), 2017.

Miyato, T., Maeda, S.-i., Ishii, S., and Koyama, M. Virtual
adversarial training: a regularization method for super-
vised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence, 2018.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Conference
on Computer Vision and Pattern Recognition (CVPR),
2017.

Peck, J., Roels, J., Goossens, B., and Saeys, Y. Lower
bounds on the robustness to adversarial perturbations.
In Advances in Neural Information Processing Systems
(NIPS), pp. 804–813, 2017.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 701–710. ACM,
2014.

Sajjadi, M., Javanmardi, M., and Tasdizen, T. Regulariza-
tion with stochastic transformations and perturbations for
deep semi-supervised learning. In Advances in Neural
Information Processing Systems (NIPS), pp. 1163–1171,
2016.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93, 2008.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei,
Q. Line: Large-scale information network embedding.
In Proceedings of the 24th International Conference on
World Wide Web (WWW), pp. 1067–1077. International
World Wide Web Conferences Steering Committee, 2015.

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in
Neural Information Processing Systems (NIPS), pp. 1195–
1204, 2017.

Batch Virtual Adversarial Training for Graph Convolutional Networks

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph Attention Networks. Interna-
tional Conference on Learning Representations (ICLR),
2018.

Wager, S., Wang, S., and Liang, P. S. Dropout training as
adaptive regularization. In Advances in Neural Informa-
tion Processing Systems (NIPS), pp. 351–359, 2013.

Weston, J., Ratle, F., Mobahi, H., and Collobert, R. Deep
learning via semi-supervised embedding. In Neural Net-
works: Tricks of the Trade, pp. 639–655. Springer, 2012.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International Conference on Machine Learning (ICML),
pp. 40–48, 2016.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-
supervised learning using gaussian fields and harmonic
functions. In International Conference on Machine Learn-
ing (ICML), pp. 912–919, 2003.

Zügner, D., Akbarnejad, A., and Günnemann, S. Adversarial
attacks on neural networks for graph data. In Proceedings
of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2847–2856.
ACM, 2018.

Batch Virtual Adversarial Training for Graph Convolutional Networks

A. Algorithms for BVAT
We present the detailed algorithms for sample-based batch
virtual adversarial training (S-BVAT) and optimization-
based batch virtual adversarial training (O-BVAT) in Al-
gorithm 1 and Algorithm 2, respectively.

Algorithm 1 Sample-based batch virtual adversarial train-
ing (S-BVAT)

1: VS = ∅, VC = V .
2: while |VS | < B do
3: Choose a node u from VC randomly and add u to VS .
4: Remove all nodes in the k-hop (∀k ∈ [0, 2K]) neigh-

borhood of u from VC .
5: Initialize rvadv,u from an iid Gaussian distribution

and normalize it as ‖rvadv,u‖F = 1.
6: end while
7: Calculate rvadv,u by taking the gradient of

LDS(Xu,W, r) with respect to r:

gu ← ∇rDKL

(
p(y|Xu, Ŵ)||p(y|Xu+r,W)

)
|r=ξrvadv,u ,

rvadv,u = ε · gu/‖gu‖F .

8: return ∇WRvadv(VS ,W)|W=Ŵ .

Algorithm 2 Optimization-based batch virtual adversarial
training (O-BVAT)

1: Initialize R(0) ∈ RN×D from an iid Gaussian distribu-
tion.

2: for i = 1 to T do
3: Calculate the gradient of Eq. (6) with respect to

R(i−1) as g(i).
4: Use an Adam optimizer to perform gradient ascent

as R(i) ← Adam(R(i−1), g(i)).
5: end for
6: R← R(T).
7: return ∇WRvadv(V,W)|W=Ŵ .

B. Experimental Setup
We examine BVAT on the three citation network datasets
Cora, Citeseer and Pubmed (Sen et al., 2008) and one
knowledge graph dataset Nell (Yang et al., 2016) with the
same train/validation/test splits as (Yang et al., 2016) and
(Kipf & Welling, 2017). The details of the four datasets
are summarized in Table 2. We use the same preprocessing
strategies as GCNs. The dimension of the preprocessed
node features in Nell is 61, 278, so the input sparse matrix
X ∈ R65755×61278 is too large to be converted to a dense
matrix that doesn’t exceed the GPU memory (GTX 1080Ti).
As a result, BVAT algorithms construct sparse virtual adver-
sarial perturbationsR for Nell. We use the same architecture,

Table 2. Statistics of the datasets used in our experiments.

Cora Cireseer Pubmed Nell

Nodes 2,708 3,327 19,717 65,755
Edges 5,429 4,732 44,338 266,144
Features 1,433 3,703 500 61,278
Classes 7 6 3 105
Label rate 0.052 0.036 0.003 0.001

initialization, dropout rate, L2 regularization factor, num-
ber of hidden units and number of epochs as GCNs. For
S-BVAT, we fix B = 100, ξ = 10−6 and T = 1. We set
the perturbation size ε = 0.03 for Cora and Citeseer and
ε = 0.003 for Pubmed and Nell. For O-BVAT, we run an
Adam optimizer with learning rate 0.001 for T = 10 itera-
tions. We set γ = 0.01 on Pubmed and γ = 1 on the others.
We tune the hyper-parameters α and β because the label
rate, feature size and number of edges vary significantly
across different datasets.

C. Ablation study of ε and α

To investigate how the perturbation size ε in S-BVAT affects
the final classification results, we conduct an ablation study
in Fig. 3a, where we plot the validation accuracy of the
trained models on Cora and Citeseer with respect to the
varied ε while keeping the other hyper-parameters fixed (on
Cora, we set β = 1.2 and α = 0.7; on Citeseer, we set
β = 0.8 and α = 0.7). As we have observed, S-BVAT is
not sensitive to ε when it changes from 0.01 to 0.1 and we
choose ε = 0.03 for both Cora and Citeseer. The conclusion
is also true for Pubmed and Nell, where ε is set to 0.003 due
to the smaller norm of input features in these two datasets.

Incorporating the conditional entropy term E(·) into train-
ing of semi-supervised tasks is confirmed useful generally
(Grandvalet & Bengio, 2005). We expect to determine the
importance of the role it plays in the BVAT algorithms. Thus,
we conduct two set of experiments on Cora by assessing
the validation accuracy of the models trained with differ-
ent values of α in the range [0, 1.5] with a granularity 0.1.
The results of the two algorithms (we assign β to 1.2 and
1.5 for S-BVAT and O-BVAT respectively) are plotted in
Fig. 3b. The results demonstrate that S-BVAT and O-BVAT
can remain high performance with regularization coefficient
α varying in a large range. Therefore, we think that the vir-
tual adversarial perturbations used in BVAT play a crucial
role in smoothing the output distribution of the model and
improving its performance, while the conditional entropy
term E(·) is an extra regularization which made the model
more suitable for semi-supervised classification.

Batch Virtual Adversarial Training for Graph Convolutional Networks

0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

V
al

id
at

io
n

ac
cu

ra
cy

0.72

0.75

0.78

0.81 Cora
Citeseer

(a)
,

0 0.2 0.4 0.6 0.8 1 1.2 1.4

V
al

id
at

io
n

ac
cu

ra
cy

0.76

0.78

0.8

0.82
S-BVAT
O-BVAT

(b)

Figure 3. (a) Effect of ε on the validation performance of S-BVAT for Cora and Citeseer. (b) Effect of α on the validation performance of
S-BVAT and O-BVAT for Cora.

D. Computation Complexity Analysis
Actually BVAT algorithms will only bring a tolerable addi-
tional computation complexity because BVAT algorithms
work in a batch manner and they only need to calculate
the gradients of the LDS loss with respect to the input fea-
ture matrix without updating the parameters of the graph
convolutional neural networks classifier. We empirically
estimate the time consuming of GCN, GCN with S-BVAT
and GCN with O-BVAT on Cora dataset, and they aver-
agely need 0.0355154, 0.03946125 and 0.1064431 seconds
for one epoch on a GTX 1080Ti respectively. GCN with
S-BVAT is a little slower than GCN as there are only two
additional forward propagations and one additional back
propagation. GCN with O-BVAT spends less than 3× time
than GCN because the optimization process involves T + 1
additional forward propagations and T additional back prop-
agations (T = 10 in all the experiments). Considering that
the classification performance of GCN w/ BVAT is notice-
ably better than GCN, its no doubt that the extra calculation
cost is acceptable.

