
Learning Transferable Cooperative Behavior in Multi-Agent Teams

Akshat Agarwal * 1 Sumit Kumar * 1 Katia Sycara 1

Abstract
While multi-agent interactions can be naturally
modeled as a graph, the environment has tradi-
tionally been considered as a black box. We pro-
pose to create a shared agent-entity graph, where
agents and environmental entities form vertices,
and edges exist between the vertices which can
communicate with each other. Agents learn to co-
operate by exchanging messages along the edges
of this graph. Our proposed multi-agent reinforce-
ment learning model is invariant to the number
of agents or entities as well as permutation in-
variance, both of which are desirable properties
for any multi-agent system representation. We
present state-of-the-art results on coverage and
formation control tasks for multi-agent teams in a
fully decentralized framework and further show
that the learned policies quickly transfer to sce-
narios with different team sizes along with strong
zero-shot generalization performance.

1. Introduction
Cooperative multi-agent systems find applications in do-
mains as varied as telecommunications, resource manage-
ment and robotics, yet the complexity of such systems
makes the design of heuristic behavior strategies difficult.
While multi-agent reinforcement learning (MARL) enables
agents to learn cooperative behavior to maximize some team
reward function, it poses significant challenges including
the non-stationarity of the environment, combinatorially
growing joint action and state spaces of the agents, and the
multi-agent credit assignment problem. Practically, most
real world environments will have partial observability (due
to limited range and/or noisy sensors) and limited com-
munication, which means agents have to learn to behave
cooperatively conditioned only on local observations and
limited communication.

*Equal contribution 1Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, USA. Correspondence to: Ak-
shat Agarwal <agarwalaks30@gmail.com>, Sumit Kumar
<sumit.sks4@gmail.com>.

Presented at the ICML 2019 Workshop on Learning and Reasoning
with Graph-Structured Data Copyright 2019 by the author(s).

While multi-agent systems have been modeled as graphs
in previous works (Sukhbaatar et al., 2016; Hoshen, 2017),
the environment has been usually treated as a black box.
The agents receive information about other agents and en-
tities in the environment in the form of a single vector or
image with everything stacked together, which is a gross
under-utilization of the natural structure present in the envi-
ronment. Here, we propose to incorporate the inherent high-
level structure of the environment directly in the learning
framework by creating a shared agent-entity graph where
both, agents and environmental entities, form vertices and
edges exist between those vertices whose occupants can
communicate with each other. Agents learn to cooperate
by sending and receiving messages along the edges of this
graph (Scarselli et al., 2009; Gilmer et al., 2017).

Building on the framework of Graph Neural Networks
(Vaswani et al., 2017; Jiang et al., 2018), we propose a
MARL model that is invariant to the number of agents or
entities present in the environment, and also invariant to the
order or permutation of entities. This facilitates transferring
policies trained for one team in a specific environment to a
team with different number of agents and/or an environment
with a different number of entities. We further show that the
team of agents can learn complex cooperative strategies via
a curriculum of progressively increasing difficulty.

2. Related Work
Recent works on MARL, like MADDPG (Lowe et al., 2017),
COMA (Foerster et al., 2018), Q-Mix (Rashid et al., 2018),
VDN (Sunehag et al., 2017), have demonstrated emergence
of cooperative behavior through centralized state or action-
value functions. CommNet (Sukhbaatar et al., 2016), VAIN
(Hoshen, 2017), DGN (Jiang et al., 2018) and ATOC (Jiang
& Lu, 2018) propose learning differentiable communication
protocols between agents for emergent cooperation. To the
best of our knowledge, the setup of the multi-agent learn-
ing architecture in these works prevents generalization to
scenarios with different number of teammates. Moreover,
all of these prior works do not utilize any structural infor-
mation present in the environment. In contrast, we propose
a shared agent-entity graph that embeds environmental in-
formation in the learning framework itself and facilitates
generalization across different scenarios.



Learning Transferable Cooperative Behavior in Multi-Agent Teams

Figure 1. The proposed shared agent-entity graph on the right, and a detailed look
at the internal architecture of each agent on the left. Messages exchanged between
agents are depicted by red edges while those between an entity and an agent are
shown by blue edges.

Figure 2. Scaled dot-product attention mechanism
for message passing.

3. Method
3.1. Agent-Entity Graph

An environment can often be described as a set of different
entities with a defined structure. For example, the envi-
ronment for a self-driving vehicle includes other vehicles,
traffic lights, pedestrians, etc. which are interacting with
each other. Also, the environment for a swarm can often be
represented as a set of obstacles and/or landmarks.

We define a graph G := (V, E) where each node n ∈ V is
either an agent or an environment entity, and there exists an
edge e ∈ E between two nodes if the node occupants can
communicate with each other. In this work, the entities re-
main static throughout an episode. However, across different
episodes, they can take random positions in the environment.
With respect to communication between agents, we consider
two variants: Restricted Communication: Two agents can
communicate with each other only if they are separated by a
distance less than a pre-defined threshold, and Unrestricted
Communication: All agents can exchange messages. In
this case, G is a fully-connected graph.

3.2. Learning to Communicate

Each agent i observes only its own local state Xi (position,
velocity). It then forms its state encoding U i = fa(X

i) by
using a learnable differentiable encoder network fa.

The agent then aggregates all the information about the
environment into a fixed size embedding Ei by using a
Graph Neural Network (GNN). Specifically, it first forms an
embedding eli = fe(X

l
i) for each of the entities l ∈ V using

an entity encoder function fe. Here, X l
i is the relative state

of entity l w.r.t. agent i. The agent then uses the dot product
attention mechanism proposed by Vaswani et al. (2017) to
update the entities’ embeddings eli and finally aggregate
them together into a fixed size environment embedding Ei.
We refer to this process as entity message passing. Note that,

there is no actual message transmission between entities and
agents, but, the agents themselves do all the computation
with the knowledge of entities’ states.

Inter-agent communication: After computing its state
encoding U i and environment encoding Ei, agent i concate-
nates them together into a joint encoding hi. This encoding
represents the agent’s understanding of its own state and
the environment. So far, the agent does not possess any
information about its teammates. Now, each agent j ∈ V
computes a key Kj = WKh

j , query Qj = WQh
j and

value V j = WV h
j vectors where WK ,WQ and WV are

learnable parameters. Agent i, after receiving query-value
pair (Qj , V j) from all of its neighbors j ∈ N (i), assigns
weight wij = softmax

(
QjKi>

dK

)
to each of the incoming

messages. Here, dK is the dimensionality of key vector. It
then aggregates all the messages by computing a weighted
sum of its neighbors’ values followed by a linear transforma-
tion V i

f = Wout
∑
wijV j where Wout is another learnable

parameter. Finally, the agent updates its encoding by do-
ing a non-linear transformation of its current embedding
hi concatenated with V i

f by using a neural network f . We
summarize our inter-agent communication module in fig. 2.

The attention mechanism enables the agents to selectively
attend to messages coming from its neighbors. We use multi-
hop communication (K rounds of message passing) to allow
information to propagate between agents that might not be
directly connected with each other. After this, each agent
has an updated encoding hi. It then feeds this encoding
into another neural network with value and policy heads to
predict its state value estimate and a distribution over all
possible actions respectively. Each agent samples an action
from the distribution and acts accordingly, upon which the
environment gives a joint reward to the team.

We consider scenarios where the agents form a homoge-
neous team and share all the learnable parameters. Since



Learning Transferable Cooperative Behavior in Multi-Agent Teams

each agent receives different observations, attends incoming
messages from other agents differently and perceives the
environment differently, sharing parameters does not pre-
clude them from behaving differently, as is appropriate. The
entire model is trained in an end-to-end manner using the
actor-critic PPO (Schulman et al., 2017) algorithm.

3.3. Curriculum Training

Since our model is invariant to the number of agents or
entities, sharing network parameters among all the agents
enables us to directly use a policy π trained for a task T
with M agents and L entities to a different task T ′ with M ′

agents and L′ entities. The policy π can serve as a good
initialization for task T ′ which can be improved further by
updating with some experiences collected in T ′. This facil-
itates in establishing a curriculum (Bengio et al., 2009) of
tasks with increasing difficulty. Agents first learn coopera-
tive behaviors in a small team and with the addition of new
members bootstraps their strategies to accomplish the goal
for this larger team.

4. Experiments
4.1. Task Description

We evaluate our proposed model on two standard swarm
robotics tasks: coverage control and formation control. We
have implemented them in MAPE 1 where the agents can
move around in a 2D space following a double integrator dy-
namics model. The action space for each agent is discretized,
with the agent being able to control unit acceleration or de-
celeration in both X and Y directions. We briefly describe
the tasks below:

Coverage Control: There areM agents andM landmarks
in the environment (see fig. 3a). The objective is for the
agents to deploy themselves in a manner such that every
agent reaches a distinct landmark.

Formation Control: There are M agents and 1 landmark
in this environment (see fig. 3b). The agents are required
to position themselves into an M -sided regular polygonal
formation, with the landmark at its centre.

4.2. Implementation Specifications

The agent encoder fa and the entity encoder fe takes as
input the 4-dim agent states and 2-dim entity states respec-
tively and outputs a 128-dim embedding. Both the encoders
are a single ReLU fully connected (FC) layer. The commu-
nication module uses attention with 128-dim queries, keys
and values. The aggregated message is concatenated with

1https://github.com/openai/
multiagent-particle-envs

(a) Coverage Control (b) Formation Control

Figure 3. Simulation Environments used in this work. Agents are
shown in blue circles while the landmarks in grey ones.

the agent’s state and passed through a single ReLU FC layer
f containing 128 neurons. We use K = 3 communication
hops between the agents. Both the policy and value heads
are 2 ReLU FC layers with 128 neurons.

All the environments are 2 × 2 sq. units in size as is the
standard in MAPE. In the restricted communication ver-
sion, we set the communication distance to be 1 unit. Each
episode lasts for a total of 50 timesteps. Evaluation is car-
ried out after every 50 updates on 100 episodes in a newly
seeded environment, during which, each agent performs
greedy decentralized action selection. Each PPO update is
performed after accumulating experience for 128 timesteps
on 32 parallel processes.

4.3. Results

We used 3 metrics to compare different methods: Success
Rate (S%): In what percentage of episodes does the team
achieve its objective? (Higher is better) Time (T): How
many time steps does the team require to achieve its objec-
tive? (Lower is better) Average Distance (DIST.): What
is the average distance of a landmark from its closest agent?
This is used in coverage control task only. (Lower is better).

4.4. Comparisons with previous work

We could not find any prior work on MARL in the two
tasks and hence do not have previously published results to
compare with. We used publicly available implementations2

to compare with Q-Mix, VDN, IQL and MADDPG. These
methods rely on access to the global state of the system
(eg., a centralized view of the entire system) during train-
ing instead of inter-agent communication for emergence of
cooperative behaviors. For these methods, the agents have
full observability, i.e., they know the position and velocity
of all the other agents at every time step. In contrast, agents
are unaware of the state of other agents in our method. The
corresponding results are shown in Table 1.

2https://github.com/oxwhirl/pymarl, https:
//github.com/openai/maddpg

https://github.com/openai/multiagent-particle-envs
https://github.com/openai/multiagent-particle-envs
https://github.com/oxwhirl/pymarl
https://github.com/openai/maddpg
https://github.com/openai/maddpg


Learning Transferable Cooperative Behavior in Multi-Agent Teams

Table 1. Comparisons with prior works with M = 3 and M = 6 agents. UC: Unrestricted Communication, RC: Restricted Communication,
T: Average Episode Length, S%: success rate, DIST: average agent-landmark distance.

OBSERV- M = 3 M = 6
TASK METHOD ABILITY COMM DIST. T S % DIST. T S %

COVERAGE Q-MIX FULL N/A 0.19 42.31 20 0.51 50 0
COVERAGE VDN FULL N/A 0.41 50 0 0.46 50 0
COVERAGE IQL FULL N/A 0.35 50 0 0.53 50 0
COVERAGE MADDPG FULL N/A 0.065 17.89 95 0.52 50 0
COVERAGE OURS PARTIAL UC 0.047 14.12 100 0.07 20.47 93
COVERAGE OURS PARTIAL RC 0.049 14.22 98 0.21 48.32 5

FORMATION MADDPG FULL N/A – 15.66 100 – 50 0
FORMATION OURS PARTIAL UC – 13.56 100 – 14.22 100
FORMATION OURS PARTIAL RC – 12.97 100 – 14.26 100

Even with full observability, only MADDPG is able to solve
the two tasks for M = 3 agents. On the other hand, our
proposed method is able to solve all the given tasks even
with partial observability. In the M = 6 agents case too,
our method outperforms all the baseline methods.

4.5. Curriculum Training

Learning cooperative behaviors becomes more and more
challenging with increase in team size. Instead of training
policies directly from scratch, we deploy a curriculum over
the number of agents. A policy is first trained with 3 agents.
Once a desired success rate (set as 90%) is achieved, a
team of 5 agents start learning with the trained policy. The
process is then repeated with 7 and finally with 10 agents.

We have incorporated entities and agents together in a shared
graph and formed a fixed dimensional environment repre-
sentation using entity message passing (EMP) mechanism
(see Section 3.2). A common alternative is to stack all the
entities’ state in a single vector and pad the vector with some
constant value to make it some fixed size. We allocated a
size of 20 units, i.e., a maximum of 10 landmarks and filled
the slots corresponding to non-existent entities with 0s. We
refer to this approach as the one without EMP.

Table 2. Curriculum Learning for coverage control task. EMP:
Entity Message Passing, N: Number of updates.

EMP COMM M = 3 M = 5 M = 7 M = 10
S% N S% N S% N S% N

NO UC 92 2450 96 3900 0 – – –
NO RC 90 2900 0 – – – – –
YES UC 96 1100 92 250 98 1000 86 200
YES RC 91 1100 96 3700 81 50 85 3250

The results of curriculum learning on coverage control task
with and without EMP are shown in Table 2. Increasing the
size of observation space (by padding) increases the problem
complexity and requires more examples to solve it. Even
then, this approach does not scale to large teams. In contrast,
our model shows fast transfer across increasingly difficult

tasks and ultimately, even a 10 agent team is able to learn
the optimal strategy. The results of curriculum learning on
the formation control task are shown in Table 3. Here also,
our model shows efficient transfer across tasks and is able
to instill optimal behaviors even in large teams.

Table 3. Curriculum Learning on formation control task
COMM M = 3 M = 5 M = 7 M = 10

S% N S% N S% N S% N

UC 94 250 99 300 100 300 100 100
RC 97 300 100 100 95 200 100 3100

4.6. Zero shot Generalization

We evaluated the policy trained for M = 5 agents directly
without any fine-tuning on different teams and the obtained
results are shown in Table 4. The trained policy shows im-
pressive zero-shot success rate in all the scenarios. This
shows that our agent-entity graph model captures the inher-
ent structure present in the environment and is able to use
its knowledge of previous scenarios to solve unseen ones.

Table 4. Zero Shot Generalization results for policy trained on a
M = 5 agents team. The obtained success rates (S%) are reported.
CC: coverage control, FC: formation control.

TASK COMM −3 −2 −1 M = 5 +1 +2 +3

CC UC 89 95 93 98 83 65 41
CC RC 84 92 99 99 99 95 74

FC UC 1 9 98 100 91 21 1
FC RC 1 68 99 99 34 30 8

5. Conclusion
We proposed a shared agent-entity graph where the agents
selectively attend to different entities of the environment and
other agents, and learn cooperate behaviors by exchanging
messages with each other. We also showed state-of-the-art
results on coverage and formation control for swarms in a
fully decentralized execution framework, and demonstrated
that the learned policy shows strong zero-shot generalization
and efficient transfer to scenarios with different team sizes.



Learning Transferable Cooperative Behavior in Multi-Agent Teams

References
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.

Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48.
ACM, 2009.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradi-
ents. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 1263–1272. JMLR.
org, 2017.

Hoshen, Y. Vain: Attentional multi-agent predictive mod-
eling. In Advances in Neural Information Processing
Systems, pp. 2701–2711, 2017.

Jiang, J. and Lu, Z. Learning attentional communication for
multi-agent cooperation. In Advances in Neural Informa-
tion Processing Systems, pp. 7265–7275, 2018.

Jiang, J., Dun, C., and Lu, Z. Graph convolutional reinforce-
ment learning for multi-agent cooperation. arXiv preprint
arXiv:1810.09202, 2018.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P.,
and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in
Neural Information Processing Systems, pp. 6379–6390,
2017.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G.,
Foerster, J., and Whiteson, S. Qmix: monotonic value
function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1803.11485, 2018.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sukhbaatar, S., Fergus, R., et al. Learning multiagent com-
munication with backpropagation. In Advances in Neural
Information Processing Systems, pp. 2244–2252, 2016.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,
J. Z., Tuyls, K., et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.


