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Abstract
For graphs generated from stochastic blockmod-
els, adjacency spectral embedding is asymptoti-
cally consistent. Further, adjacency spectral em-
bedding composed with universally consistent
classifiers is universally consistent to achieve the
Bayes error. However when the graph contains
private or sensitive information, treating the data
as non-private can potentially leak privacy and
incur disclosure risks. In this paper, we propose
a differentially private adjacency spectral embed-
ding algorithm for stochastic blockmodels. We
demonstrate that our proposed methodology can
estimate the latent positions close to, in Frobenius
norm, the latent positions by adjacency spectral
embedding and achieve comparable accuracy at
desired privacy parameters in simulated and real
world networks.

1. Introduction
Our framework considers random graphs. A random graph
is a graph-valued random variable, with a fixed vertex set
and a random edge set generated from a probabilistic dis-
tribution. The latent position models (Hoff et al., 2002),
random dot product graphs (Young & Scheinerman, 2007)
and stochastic blockmodels (Holland et al., 1983b; Wang &
Wong, 1987) are a few examples of random graphs. Many
algorithms develop ed on random graphs indicate vertices
from the same class share similar connectivity patterns. One
important exploitation task on such datasets is vertex clas-
sification to identify the class labels of the vertices. For
example, we may wish to classify whether a user in a so-
cial network holds liberal or conservative political views, or
whether an individual in a communication network belongs
to a social community.

The adjacency spectral embedding and Laplacian spectral
embedding methods are valuable for performing inference
on graphs realized from a stochastic blockmodels (Sussman
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et al., 2014; Fishkind et al., 2013; Sussman et al., 2012; Tang
et al., 2013). Theoretically they are proven to be consistent
estimation (Devroye et al., 1996) of the latent positions that
generate the stochastic blockmodels. Classification tech-
niques such as k-nearest neighbor composed with spectral
embedding are proved to be Bayes optimal, which indicate
such composition can theoretically obtain the minimum
misclassification error.

On the other hand, graphs that describe social networks,
communication networks or purchasing networks can con-
tain sensitive and private information about individuals such
as their communication frequencies, patterns, webpage vis-
its, purchasing behaviors and so on. It becomes critical to
propose and design inference algorithms on random graphs
for not only generating effective and accurate analysis re-
sults but also protecting the sensitive nature of the informa-
tion.

Differential privacy (Dwork, 2011) is a mechanism that mea-
sures privacy risk via parameters α or (α, δ) and bounds the
likelihood of the algorithm when two data sets differ by
one sample. A randomized algorithm is considered differ-
entially private when its outputs cannot expose whether a
particular individual’s information was used in the computa-
tion. Essentially, differential privacy requires the probability
distribution on the analysis results, over the outcome space
of the underlying algorithm, to be roughly the same, inde-
pendent of whether or not any individual exists in the data
set.

Motivated by the practical challenges faced with inference
on random graphs containing sensitive information, in this
paper, we propose a differentially private adjacency spectral
embedding procedure on stochastic blockmodels to estimate
the latent positions and further composite it with univer-
sally consistent classifier such as k nearest neighbor for
vertex classification. We demonstrate in our experiments
the classification efficacy in simulated experiments and two
real-world networks.

The rest of the paper is organized as follows. In Section 2,
we provide brief background on graph models and differen-
tial privacy. In Section 3, we present our proposed algorithm
differentially private adjacency spectral embedding. In Sec-
tion 4, we present results on numerical simulation, a political
blog network and a co-purchasing product network.
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2. Preliminaries
2.1. Graph Models

A random graph is a graph-valued random variable: G :

Ω→ Gn, where Gn represents the collection of all 2([n]
2 ) pos-

sible graphs on the vertex set V = [n], and Ω is a probability
space. Associated with the adjacency matrix A ∈ Rn×n,
there exists a probability matrix P ∈ [0, 1]n×n, where each
entry Pij denotes the probability of edge between vertex i
and vertex j.

In the latent position model (LPM) (Hoff et al., 2002), each
vertex i is associated with a latent random variable Xi ∈ Rd
drawn independently from a specified distribution F on Rd.
These latent variables determine the probabilities of edge
existence. The adjacency matrix entries Aij |(Xi, Xj) ∼
Bernoulli(l(Xi, Xj)) are conditionally independent, where
l : Rd × Rd → [0, 1] is defined as the link function.

The stochastic blockmodel (SBM) is a special case of LPM.
The latent positions of an SBM are sampled as a mixture of
the point masses which are the eigenvectors of B. The SBM
(Holland et al., 1983a) is a family of random graph models
with a set of n vertices randomly belonging to K blocks.
Conditioned on the K-partition, edges between all the pairs
of vertices are independent Bernoulli trials with parameters
determined by the block memberships of the two vertices.
Definition 1. Stochastic Blockmodel SBM([n], B, π) Let
K be the number of blocks. Let π be a length K vec-
tor in the unit simplex ∆K−1 specifying the block mem-
bership probabilities. The block membership of the ver-
tex i is given by Yi

iid∼ Multinomial([K], π). Let B be a
K ×K symmetric block communication probability matrix.
Then the graph G is realized from a stochastic blockmodel
G ∼ SBM([n], B, π) if

P(A|Y1, ..., Yn) = Πi<jP
Aij

ij (1− Pij)1−Aij , (1)

Pij = P(Aij = 1|Xi, Xj) = P(Aij = 1|Yi, Yj) = BYi,Yj
.

(2)

2.2. Adjacency Spectral Embedding

Adjacency spectral embedding (ASE)(Sussman et al., 2012)
has theoretical guarantee to consistently estimate the la-
tent positions of SBM. This technique applies spectral
decomposition on A to compute the first d eigen-pairs
(UA, SA) ∈ Rn×d × Rd, where SA is diagonal with the
top d eigenvalues sorted in absolute values. The resulted
embeddingASE := UAS

1
2

A consistently estimates the block
memberships of SBM. The consistency property of Lapla-
cian spectral embedding is proved in (Rohe et al., 2011).

Adjacency spectral embedding followed by k-nearest neigh-
bor (kNN) classifiers (Sussman et al., 2014), linear classi-
fiers(Tang et al., 2013) is shown to be universally consistent,

which means such procedure achieves the minimum Bayes
error as n goes to infinity.

2.3. Differential Privacy

Denote a randomized algorithm by f taking values in a set
S. A and B are datasets that differ by one element.

Definition 2. α-Differential Privacy f provides α-
differential privacy if

P(f(A) ∈ S) ≤ P(f(B) ∈ S)eα. (3)

Definition 3. (α, δ)-Differential Privacy f provides (α, δ)-
differential privacy if

P(f(A) ∈ S) ≤ P(f(B) ∈ S)eα + δ. (4)

The parameter α bounds on the change in probability of any
outcome. A low value of α such as 0.1 implies that very
little can change in the beliefs about any sample’s existence
in the database. The (α, δ)-Differential Privacy is a weaker
notion compared with the α-Differential Privacy.

3. Differentially Private Adjacency Spectral
Embedding

We propose a differentially private mechanism for adjacency
spectral embedding (DP-ASE) to estimate the latent posi-
tions of stochastic blockmodels (SBM).

Algorithm 1 DP-ASE for SBM

Input: The adjacency matrix A. The embedding dimen-
sion d. Desired privacy parameters (α, δ).
Output: Differentially private approximations of latent
positions XDP ∈ Rn×d.
Step 1: Set β2 := 8d2 log2(d/δ)

n2α2 . Sample a matrix E
whose entries are i.i.d from normal distributionN (0, β2).
Symmetrize E.
Step 2: Apply spectral embedding on ADP := A +
E. Compute the first d eigen-pairs of ADP , denoted by
(UDP , SDP ) ∈ Rn×d × Rd, where SDP has d largest
eigenvalues in magnitude sorted in non-increasing order.
Step 3: Denote the d-dimensional coordinate-scaled sin-
gular vector matrix of ADP to be XDP := UDPS

1/2
DP ∈

Rn×d.

Theorem 1 (Privacy of DP-ASE). Algorithm 1 computes
an (α, δ)-differentially private approximation to adjacency
spectral embedding on stochastic blockmodels.

Proof Sketch. The proof of Theorem 1 follows directly from
the differentially private algorithm SULQ to approximate
PCA with privacy guarantee (Blum et al., 2005; Chaudhuri
et al., 2012).
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4. Experiments
An effective differentially private algorithm should not only
provide privacy guarantee but also generate reasonably ac-
curate results. In our experiments, we compose a universally
consistent classifier k nearest neighbor with DP-ASE, de-
noted by kNN◦DP-ASE and evaluate its classification error.
The exploitation task is to correctly predict the block mem-
berships of the vertices. The comparison baseline is the
classification error by kNN◦ASE. We set k = 3 in the near-
est neighbor classifier, use leave-one-out cross validation
to estimate the classification error and generate new matrix
E ∼ N (0, β2) in each Monte Carlo replicate.

4.1. Simulation

We simulate SBM with K = 2 blocks (Y ∈ {1, 2}) and

parameters B =

(
0.3 0.1
0.1 0.2

)
, π = [0.4, 0.6]T .

Our first experiment is to compare the latent position ap-
proximation and classification performance with or with-
out preserving privacy at fixed but low privacy budget,
as the number of vertices increases. We apply ASE
and DP-ASE at fixed privacy parameters α = 0.1 and
δ = 0.001. We first vary the number of vertices
n ∈ {50, 100, 500, 1000, 1500, 3000, 3100, 3500, 4000}
and compare two terms: 1. the Frobenius norm (F-norm) of
the latent positions estimated by DP-ASE and ASE respec-
tively, and the F-norm of the latent positions estimated by
two ASEs aligned via solving the orthogonal Procrustes fit
problem (Gower et al., 2004); 2. the classification errors by
kNN◦DP-ASE and kNN◦ASE respectively at each n. As
n increases, DP-ASE approximates to ASE in both latent
position estimation and classification error, as seen in left
two figures in Fig 1.

Next we understand the utility-privacy tradeoff for smaller-
sized stochastic blockmodels. We set n = 300, vary the
privacy parameters α ∈ {0.001, 0.011, 0.021, ..., 0.05} and
δ ∈ {0.0001, 0.0021, 0.0041, ..., 0.6} and examine the clas-
sification error of kNN◦DP-ASE. We inspect the minimum
levels of privacy parameters for kNN◦DP-ASE to achieve
the Bayes error, which is zero in this simulation. In the heat
map of Fig 1, the rows are α and columns are δ. kNN◦DP-
ASE achieves the Bayes error at the lower values of the
privacy parameters, which provide tighter privacy bounds.

4.2. Real Data Experiments

4.2.1. POLITICAL BLOG SPHERE

The political blog sphere (Adamic & Glance, 2005) con-
tains 1490 blogs during the 2004 presidential election as
vertices, and edges if the blogs are linked. Each blog is ei-
ther liberal or conservative with label distribution at (0.508,

0.492). Hence the chance error is 0.492. Since the number
of memberships does not necessarily equal to the correct
embedding dimension in practice, we first vary the embed-
ding dimension d ∈ {2, 5, 8, ..., 100} at fixed α = 0.1 and
δ = 0.01. As seen in Figure 2 (a), the lowest classification
error by kNN◦DP-ASE is 0.25 at d̂ = 2, but it is higher than
the classification error by kNN◦ASE at 0.180. Such degra-
dation is due to the noise added under differential privacy
scheme.

Our next experiment is to examine the trade-off between
privacy budget and utility by observing, at which values
of α, the error rate under privacy scheme is as accurate
as the error rate without privacy. In practice, there exists
limited guidance on appropriate values of α (Jayaraman
& Evans, 2019) and thus we intend to understand such
tradeoff via empirical evaluation. We fix δ = 0.01, vary
the privacy parameter α = 0.001 : 0.01 : 10 and present
the classification errors of kNN◦DP-ASE and kNN◦ASE
at d̂ = 2 in Fig 2 (b). As α increases, the error rate by
kNN◦DP-ASE decreases and approximates the error rate
by kNN◦ASE. For d̂ = 2, the lowest classification error
by kNN◦DP-ASE is 0.164 at best privacy parameter α =
6.451. However we discover that at a privacy budget α as
low as 0.251, kNN◦DP-ASE has error of 0.189 very close
to the classification error without privacy at 0.180.

4.2.2. PRODUCT CO-PURCHASING NETWORK

The Amazon product co-purchasing network (Yang &
Leskovec, 2015) contains products as nodes with edge exis-
tence such that if a product i is frequently co-purchased with
product j, then an undirected edge exists between i and j.
The labels are product categories provided by Amazon. The
original network contains 0.33M vertices with 0.92M edges.
We select the six largest categories out of 5000 categories
from the network. Since some products belong to multiple
categories, we choose only one category to associate with
each product and generate a subgraph of 794 nodes with la-
bel distribution of (0.413, 0.393, 0.194). The classification
chance error is 0.587. Since the number of memberships
does not necessarily equal to the correct embedding dimen-
sion in practice, we first vary the embedding dimension
d ∈ {2, 3, ..., 60} at fixed α = 0.1 and δ = 0.01 and use
5-neareast neighbor classifier. We find the best classifica-
tion error under differential privacy scheme at 0.584 is only
slightly lower than chance error. The contribution of noise
under differential privacy is likely to cause the degradation
in classification performance of kNN◦DP-ASE. The classi-
fication error without differential privacy is lowest at 0.489.
We expect to see an improvement in classification efficacy,
if better disjoint categories are selected to construct the sub-
graph or multi-label classification is performed. From the
minimum error rates by kNN◦DP-ASE and kNN◦ASE re-
spectively, we select two best embedding dimensions to be



Privacy Preserving Adjacency Spectral Embedding on Stochastic Blockmodels

Figure 1. (1) F -norm of the estimated latent positions. As n increases, the distance of the estimated latent positions via ASE and DP-ASE
become closer. (2) Classification error. When n is small, kNN◦DP-ASE has higher classification error than kNN◦ASE. As n increases,
classification error by kNN◦ goes to the Bayes error at zero. (3) 3D plot of F -norm difference as α and δ vary. (4) Heat map of
classification error as α and δ vary. kNN◦DP-ASE achieves Bayes error at privacy parameters with lower values.

(a) (b)

Figure 2. Experiment on political blog sphere. (a) Classification
error by kNN◦DP-ASE and kNN◦ASE at embedding dimensions
d ∈ {2, 5, 8, ..., 100} with fixed α = 0.1 and δ = 0.01. (b)
Privacy-utility tradeoff analysis. Utility-privacy tradeoff evalua-
tion. As α increases, the error rate by kNN◦DP-ASE decreases
and approximates the error rate by kNN◦ASE. For d̂ = 2, the
lowest classification error by kNN◦DP-ASE is 0.164 at best pri-
vacy parameter α = 6.451. However we discover that at a privacy
budget α as low as 0.251, kNN◦DP-ASE has error of 0.189 very
close to the classification error without privacy at 0.180.

d̂1 = 35 and d̂2 = 60.

Our next experiment is to examine the trade-off between
privacy budget and utility by observing, at which values
of α, the error rate under privacy scheme is as accurate
as the error rate without privacy. In practice, there exists
limited guidance on appropriate values of α (Jayaraman
& Evans, 2019) and thus we intend to understand such
tradeoff via empirical evaluation. We fix δ = 0.01, vary
the privacy parameter α = 0.001 : 0.01 : 10 and present
the classification errors of kNN◦DP-ASE and kNN◦ASE
at d̂ ∈ {d̂1, d̂2} respectively in Fig 3 (b) and (c). As α
increases, the error rate by kNN◦DP-ASE decreases and
approximates the error rate by kNN◦ASE. For d̂ = 35,
the lowest classification error by kNN◦DP-ASE is 0.52 at
best privacy parameter α = 3.42. For d̂ = 60, the lowest
classification error by kNN◦DP-ASE is 0.50 at best privacy
parameter α = 9.25.

(a) (b)

Figure 3. Experiment on product co-purchasing network. Utility-
privacy tradeoff evaluation. As α increases, the error rate by
kNN◦DP-ASE decreases and approximates the error rate by
kNN◦ASE. For d̂ = 35, the lowest classification error by
kNN◦DP-ASE is 0.52 at best privacy parameter α = 3.42. For
d̂ = 60, the lowest classification error by kNN◦DP-ASE is 0.50 at
best privacy parameter α = 9.25.

5. Conclusion
In this paper we design a differentially private approxima-
tion to adjacency spectral embedding (DP-ASE) on stochas-
tic blockmodels and investigate the theoretical and empirical
performance of the proposed algorithm. In our numerical ex-
periments, we demonstrate that as n increases, for simulated
stochastic blockmodels, a universally consistent classifier
composed with DP-ASE can achieve the best error as ASE.
From varying the privacy parameters in the simulation ex-
periments, we observe that such mechanism can achieve the
minimum possible error at desired privacy parameter lev-
els, which can provide a tighter privacy bound. In practice,
there has not been a principled guidance on the best privacy
parameters to select while preserving inference accuracy. In
our empirical analysis, we find that at reasonable privacy
budget DP-ASE can achieve classification error as close as
without preserving privacy. We continue our research with
theoretical proofs on the consistency of DP-ASE and the
universal consistency of a universally consistent classifier
composed with DP-ASE.
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