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Abstract
We introduce the simplification of mathematical
expressions as a sequential task whose solution
requires understanding the structure of the expres-
sions. We do not assume any expert information
and develop a curriculum learning algorithm that
makes learning in a space with a highly sparse
reward signal possible. Graph Neural Network is
used to represent the expressions and we show via
an intermediate task that it has sufficient expres-
sive power to keep the necessary information for
the simplification. The proposed algorithm is able
to learn the simplifying sequence of actions from
scratch by solving a curriculum of expressions
with increasing complexity.

1. Introduction
Many different learning algorithms with almost the same
principles (connectivity in architecture and backpropagation
in learning) have achieved considerable success in areas
such as object detection (Redmon et al., 2016), speech recog-
nition (Hinton et al., 2012), and machine translation (Wu
et al., 2016) in supervised learning and areas such as gen-
erative models (Goodfellow et al., 2014) and density esti-
mation (Sohl-Dickstein et al., 2009; Saremi et al., 2018)
in unsupervised learning. Reinforcement Learning (RL) is
another major area that enjoys the connected hierarchical ar-
chitecture of neural networks to scale the already known al-
gorithms to more interesting problems (Silver et al., 2017b).

The major focus of machine learning in the past few years
has been on problems which are so-called intuitive and their
analysis is almost effortless for the human brain. Seeing,
hearing, voice generation, etc are all natural products of our
connectionist brain. However, we need to educate ourselves
and think carefully to be able to perform even the simplest
logical tasks such as algebraic operations. One reason for
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Figure 1. The expression tree of e := ( x+yz )−1

x∗( x+yz )
. The scrolls next

to each node represents hv which is initialized by the node labels
and computed after passing through the propagation dynamics
function for T steps. The output function aggregates these scrolls
and gives an overall representation of the expression tree denoted
by the scroll marked with red ”exp”.

this difficulty would be the way objects are represented in
our brain. Despite the efficacy of our neural circuits in repre-
senting natural signals, our brain seems to lack an easy way
to represent abstract logical objects such as geometric con-
cepts, mathematical expressions, and etc. It is commonly
believed that such a representation will be necessary for
Artificial General Intelligence (AGI) when processing natu-
ral sensory information and logical thinking are supposed
to occur by the same computational framework (Legg &
Hutter, 2007; Garnelo et al., 2016).

In this work, we propose a representation for mathematical
expressions based on Graph Neural Networks (GNN) and
use it in an RL task whose goal is to optimize an inherent
complexity measure of expressions. We see this simplifi-
cation as a surrogate task toward logical reasoning whose
solution can shed light on RL algorithms in symbolic do-
mains.

Related works— Using machine learning in logical
problems have recently received a fair amount of at-
tention, for example, in Automatic Theorem Provers
(ATP) (Robinson & Voronkov, 2001). Closest to our work
but in a different domain is (Kaliszyk et al., 2018) where
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MCTS (Abramson, 2014) is applied as a search strategy
to guide ATP toward more efficient proofs given a large
corpus of previous proofs which are translated to a formal
language. In the same direction, an RL environment is de-
signed by Huang et al. based on a proof assistant with a
large library of supervised data. Other forms of using ML to
improve current theorem provers have shown promising re-
sults (Gonthier et al., 2013; Loos et al., 2017) suggesting the
value of deeper understanding of the learning-based auto-
mated logical reasoning. In a different application but with
the same flavor of self-taught learning in sparse rewarding
state space, McAleer et al. proposed a method to learn the
sequence of actions to solve a randomly initialized Rubik
cube.

In the following, after an introduction to GNN as necessary
background information, the proposed representation is in-
troduced. An intermediate classification task is presented in
Section. 3.1 to show the efficacy of the representation. The
simplification task which is the main goal of this paper is
then presented in Section. 3.2.

2. Background
2.1. Graph Neural Networks

In this section, we briefly review GNN (Scarselli et al.,
2009) and the version we employed for this work (Li et al.,
2015). GNN is a dynamical message passing algorithm that
condenses the information of a graph in an m-dimensional
vector. The algorithm can focus on a particular node of
the graph or the whole graph as an entirety. Assume G =
(V, E) is the graph of interest and v ∈ V a certain node.
GNN(G, v) ∈ Rm gives the representation that preserves
the graph structure. Recent theoretical results show that the
discriminative power of GNN is comparable to Weisfeiler-
Lehman (Weisfeiler & Lehman, 1968) graph isomorphism
test (Xu et al., 2018). Assume the node vector for node v
is represented by hv ∈ RD. Graphs may also have node
and edge labels represented by lv ∈

{
1, . . . , L|V|

}
and le ∈{

1, . . . , L|I|
}

respectively. Let NBR(v) be the adjacent
nodes to v and Co(v) be the set of edges with v as one end.
(See Appendix. A for more detailed definitions.)

To obtain the vectorial representation, information is propa-
gated along the edges of the graph by the dynamics

h(t)
v = f

(
lv, lCo(v), lNBR(v),h

(t−1)
NBR(v)

)
. (1)

that run for T steps to give node vectors h(T )
v .

The final representation is formed by aggregating node vec-
tors and initial node labels via a function called output func-
tion which is defined as ov = g(h

(T )
v , lv) for each node or

oG = g(h
(T )
0 , l0, . . . ,h

(T )
ν , lν) for the whole graph. The

error is backpropagated through T steps to learn the parame-

ters of f and g. In this work, to gain more expressive power,
we use the architecture proposed by Li et al. in which the
propagation function is implemented by GRU (Cho et al.,
2014) and the dynamics does not continue until convergence
(T <∞). See Appendix. B for more details.

2.2. Expression Tree

The main purpose of this work is to learn to do simple
manipulations on mathematical expressions which are repre-
sented by GNN to allow gradient-based learning. By math-
ematical expressions, we refer to any expression E(V) =
x� y � . . .� s� t where V = {x, y, . . . , s, t} is a set of
variables (symbols) and � ∈ {+,−, ∗,÷, (, )}. It is possi-
ble to represent every mathematical expression of this form
as a tree called expression tree (See Fig. 1).

3. Method
In this section, we describe the components of our tasks
and the proposed algorithm to solve them. First, we present
the way GNN of Section. 2.1 is employed to represent ex-
pression trees of Section. 2.2. An expression tree is a graph
whose nodes are either variables or mathematical operators.
The edges of this graph represent the relative position of
variables with respect to operators. GNN does not discrimi-
nate between variables and operators and considers both as
graph nodes. The initial node vector h(v) ∈ RD is a con-
catenation of a one-hot vector (indexing each operator and
variable) as the node label lv ∈ R|V| and a zero vector with
dimension D − |V| to allow extra capacity for the represen-
tation of nodes. Even though the edges in an expression tree
are uni-directional, we found it technically useful to have
more edge types in the GNN architecture. This gives the
learning algorithm more expressive power if it is necessary
for the downstream task.

In the following, we define two tasks: The first task is a bi-
nary classification that is a diagnostic step toward the second
task. The second task is a self-taught RL agent that learns to
apply logical modifications to simplify mathematical expres-
sions only from self-experience. To keep the presentation
concise and clear, we deferred most of the details to the
appendix. The reader is encouraged to consult the appendix
at any point for more details.

3.1. Classification task

We define a classification task to detect if an expression
contains a special subexpression. The idea behind this ex-
periment is to make sure that the necessary information for
more sophisticated tasks won’t be washed out through the
dynamics of the propagation function of GNN. For example,
applying the rules of algebra on mathematical expressions
requires knowing which subexpressions are present in the
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Table 1. Binary classification result for detecting whether a partic-
ular subexpression exists within host expressions or not

SubExp 1− x x+ y
x

x+ y

z

x
+
y

z

Acc 81± 7% 79± 9% 77± 5% 83± 11%

expression to know the legal algebraic manipulations. We
developed an algorithm called Host-Virus to synthesize data
for this experiment (See Appendix. C for details). The gen-
eral idea is to synthesize a set of so-called host expressions
e by growing expression trees with a prior probability over
operations, variables, and the depth of the tree. Then, con-
taminate the host expressions by planting a specific expres-
sion so-called virus in them. The classifier is supposed to
detect contamination. The accuracies reported in Table. 3.1
for different virus expressions show that the GNN is able to
detect if an expression contains a particular subexpression.
For comparison, we did the same experiment for a model
that consists of an ordinary embedding layer followed by a
dense layer (see Appendix. E). We call this approach Ordi-
nary Embedding Network (OEN). It was observed that OEN
easily finds shortcuts in the dataset to reduce its loss which
can be seen as over-fitting to the dataset. For example, in the
case where x+y is the virus, it achieves a decent accuracy of
78% but it was so certain (0.998%) that the virus expression
x+ y itself belongs to the non-contaminated class which is
obviously wrong. Further investigations showed that OEN
had become sensitive to the length of the expression which
normally increases when an expression is contaminated with
another expression. We observed that the GNN represen-
tation is more robust to this effect and it leads to correct
classification even for fairly short contaminated expressions.

3.2. Expression simplification task

We now move on to a more challenging task which can be
seen as a small step toward machines that learn mathemati-
cal reasoning such as algebra from scratch.

Mathematical reasoning is a sequential task that starts from
a set of premises (initial state) and applies a set of logical
rules (action space) that are applicable to the current state of
the problem. The set of legal moves is often enormous if we
do not restrict ourselves to a subset of mathematics. In the
terminology of RL, a reward for a logical reasoning task is
issued when the theorem is proved or some predetermined
goal is achieved. Here, as an example of mathematical
reasoning, we focus on the simplification of mathematical
expressions and demonstrate it as an RL task. The expres-
sions will be the states of the Markov Decision Process
(MDP). The set of possible rules that form the action space
can be accurately written. Even this seemingly simple prob-

x + x

x
+ y � 2 + 3 ⇥ z + 7 ⇥ z + 2 ⇥ z Algebraic 

Simplification y + 12 ⇥ z

✓
x + y

z

◆
� 1

x ⇥
✓

x + y

z

◆ Binding 
Simplification v :=

x + y

z
in e =

v � 1

x ⇥ v

Cost = 14

Cost = 8Cost = 11

Cost = 3

Figure 2. Two examples of the cost of expressions and the reduc-
tion in their cost by simplification via algebraic rules and binding
rules.
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Figure 3. An example of the simplification process when both al-
gebraic and binding rules are used.

lem turns out to be difficult for an RL agent mainly due to
the sparsity of the rewarding states.

Let’s consider an MDP defined asM = (S,A, c). Every
state of this MDP is a mathematical expression e ∈ S simi-
lar to Fig. 1. The action spaceA is the set of applicable rules
on the current state of the MDP, hence can be written as a
function of the expressionA(e). The cost function (negative
reward function) c(e) is defined as a measure of the com-
plexity of the expression e. Every mathematical operation
contributes a certain amount of complexity to the cost of
an expression, roughly reflecting the time it takes a com-
puter to compute that operation. We consider the following
atomic costs for the operations {+ : 1,− : 1, ∗ : 2, / : 2}
implying that multiplication and division are twice as costly
as addition and subtraction which is a plausible assumption
in computer engineering. The cost of an expression is then
defined as the sum of the cost of all its operations. The
ultimate purpose of the algorithm is to start from initial ex-
pression einit and apply a sequence of logical actions chosen
fromA(e) on each expression e to find the simplest possible
mathematical expression efinal which is logically equivalent
to einit but with lower cost, i.e., c(efinal) ≤ c(einit). We call
this task expression simplification. Mastering this sequential
task requires the agent to know about the expression and its
subexpressions which will be reflected in the GNN repre-
sentation. The earlier task in Section. 3.1 was designed to
test such capability in GNN representation. In other words,
if the GNN representation of an expression degenerates
footprints of its subexpressions, there is no way to simplify
expressions such as (c ∗ e)/e → c that requires detecting
the common subexpression e in the nominator and denom-
inator of the ratio. We leave the details of the task to the
Appendix. H and give the overall description of the task here.
The RL agent starts with an initial expression einit as the ini-
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Figure 4. The progress of generation-by-generation curriculum
learning strategy that makes the learning possible in an environ-
ment with highly sparse rewarding states.

tial state of the MDP. A set of logical manipulations (rules)
are possible for einit. We define two sets of logical manip-
ulations (algebraic, binding). Algebraic rules correspond
to a set of standard algebraic actions such as commutativ-
ity, addition with 0, etc (See Table. 2 in the appendix for
details). Binding rules correspond to the change of vari-
ables when a frequent costly subexpression is assigned to
a new variable which takes the role of the subexpression.
An example of both classes of manipulations can be seen in
Fig. 2. There are occasions when both sets of actions are
required to achieve a simpler expression as shown in Fig. 3.
The RL agent applies an action chosen from the possible
logical manipulations for the expression einit and transits to
the resultant expression as the next state of the MDP. The
value function V (·,θV ) (Schulman et al., 2015) is learned
from (einit, c(e(t))− c(einit)) pairs and guides the logical
manipulations. Roughly speaking, the actions that result
in expressions with a higher value are more likely to be
explored by the agent. See Appendix. G for further details.
Learning this function requires rewarding states which are
unfortunately hard to obtain in this task. In the next section,
we present a curriculum learning approach to deal with this
issue.

3.2.1. CURRICULUM LEARNING

At the beginning of the training procedure, the value func-
tion is untrained and it has no preference for any action on
any expression. Hence, the strategy will be applying a se-
quence of random legal actions and choosing the sequence
that gives the best value (simplest expression). However,
the number of legal manipulations for expression e grows
rapidly with the complexity of e. In other words, a deeper
expression tree allows much more algebraic and binding ma-
nipulations. Consequently, the number of distinct episodes
starting from expression e becomes enormously large such

that exploring all of them for a rewarding state (an expres-
sion simpler than einit) becomes quickly infeasible. This is
largely due to the fact that the value function is unbiased at
the beginning and does not downweight the actions which
are not so promising. To combat this issue, we manually
design a curriculum of expressions [e(0), e(1), . . . , e(g), . . .]
with increasing complexity such that e(g) shows the expres-
sion of gth generation. The first generation expression e(0)

of the curriculum must be simple enough such that by choos-
ing uniformly random actions, a couple of rewarding states
(simpler expressions) can be found among a reasonable
number of simulated episodes. Once a simpler expression
is found in an episode, the value function is updated for all
expressions of that episode. In other words, the knowledge
about solving e(0) is distilled in V1(·). For the expression
of the next generation e(1), the actions are chosen by a mix-
ture of uniform distribution and the Boltzmann distribution
derived from V1 (See Appendix. F). This means that we
partially rely on the already accumulated knowledge in the
value function but still leave some room for purely random
simulations. Fig. 4 shows the expressions of a designed
curriculum and also the success rate of simulations. The
success rate is the ratio of episodes that have led to an ex-
pression with the least possible cost over the number of
all explored episodes. As expected, the success rate of the
initial agent that takes purely random actions for e(0) is
very small but still enough to bootstrap V1(·) and guide the
simulations for the next generation to achieve a significant
increase in the success rate. Moving from one generation
to the next, the information of the successful episodes will
be cumulatively distilled in the value function as detailed in
Appendix. G.

3.3. Conclusion

We showed the efficacy of GNN to represent mathematical
expressions. We designed a task called Expression Simpli-
fication whose solution requires a good representation of
expressions. As a middle step toward this task, we also de-
signed a supervised learning task that classifies expressions
according to the presence of a particular subexpression in
them. This intermediate step gives us some assurance that
GNN can be a good representation for the simplification
task. We see the classification step also as a diagnostic tool
that helps us choose crucial hyperparameters of GNN such
as the number of propagation steps T and the number of
edge types. Viewing the introduced RL task as a step toward
goal-driven logical manipulation of symbolic objects, a pos-
sible direction in the future would be extending the set of
expressions to other symbolic objects such as incorporating
unary functions in the expressions. This would be useful in
learning the exact equations that govern the observed data
rather than uninterpretable neural network counterparts.
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Supplementary

A. Definitions
The predecessor and successor nodes of v are respectively defined as IN(v) = {v′| (v′, v) ∈ I} and OUT(v) =
{v′| (v, v′) ∈ I} for a directed graph. NBR(v) = IN(v) ∪ OUT(v) is the set of all adjacent nodes to v and
Co(v) = {(v′, v′′) ∈ I|v = v′ ∨ v = v′′} is the set of all edges connected to the node v.

B. Architectural Details
In this sections, we present the details of the GNN architecture which is used in this paper. As mentioned in the main text,
we used the architecture introduced in (Li et al., 2015) that extends the original GNN (Scarselli et al., 2009) in two main
lines: Firstly, It allows nonlinear propagation function via a recurrent unit called GRU. Secondly, it runs the dynamics
of the propagation function for certain time steps T in contrast to (Scarselli et al., 2009) where the dynamics runs until
convergence. Setting T = 10 works well for a wide variety of experiments including those introduced in this paper. We
observed that too small or too large T both deteriorates the expressive power of GNN. We set 5 edge types for the GNN to
gain sufficient expressive power. Notice that edge types can be seen as generalized directions. Even though each edge can
take one of two directions, it can take several types allowing higher representational power as each edge type corresponds
to a new adjacency matrix. The latent space of the GRU unit is set to 200 in our experiments. The output (aggregation)
function is implemented by an MLP with one hidden layer with the dimension of 200.

C. Host - Virus algorithm
To create the dataset required for the classification task, we developed an algorithm inspired by the way viruses act in nature.
We first generate a set of random expressions by growing the expression trees as Fig.1. To grow a tree, the synthesizer
alternately chooses between a list of available variables such as {x, y, z} and a list of available operands {+,−, ∗,÷}
while sampling the members of each set with some prior probability (uniform in our setting). The depth of the tree is also
randomly chosen in the range [1, 4]. We put these expressions in a set called hosts. Then we define the expression e′, called
virus, where detecting its presence in the other expressions is the goal of the classification task. To this aim, we check every
member of the set hosts for variables in the layers of the expression tree deeper than 2. The virus then contaminates the host
with a fixed probability (0.5 in our experiment) by replacing one of these variables located at inner layers of the expression
tree of the host. By exposing each host expression to the virus, we will have a set of contaminated expressions that are
considered as positive samples. Other expressions which are not contaminated by the virus are considered as negative
samples for the learning process. We make sure that in the final dataset which is used for training the classifier, the number
of positive and negative samples are approximately equal.

D. Details of the classification experiment
For the classification task, we employed a GNN architecture similar to Appendix. B and used the Host-Virus algorithm
as detailed in Appendix. C to create 100, 000 positive and 100, 000 negative examples. 80% of this dataset is used for
training and the rest 20% for testing. We train the algorithm end-to-end with batch-size = 16 and learning-rate = 0.0001
with Adam optimizer and repeated the entire process for 1000 times to make sure the observations are not dependent on the
initialization and other random effects. The test accuracy in Table. 3.1 for four different virus subexpressions is computed
over the left-out portion of the dataset.

E. Details of the classification baseline
As a baseline for the classification experiment, we treated mathematical expressions as textual data and employed ordinary
neural networks on top of an embedding layer (OEN model). The textual inline representation of the mathematical expression
is first tokenized. For the dataset generated by the Host-Virus algorithm of Section. 3.1, the vocabulary becomes

{‘ ‘, ‘(‘, ‘)‘, ‘x‘, ‘y‘, ‘z‘, ‘1‘, ‘2‘, ‘3‘, ‘ + ‘, ‘−, ‘ ∗ ‘, ‘/‘} (2)
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where that tokenization is character-level. Each expression is mapped to a sequence of integers using (2) and zero-padded to
an array of length 100 which is larger than the length of any expression in the dataset. Integer-encoded expressions are then
fed to a Keras’s embedding layer (Chollet, 2015) that outputs 10-dimensional latent vectors. The embedding layer maps
every input expression to a 10× 100 matrix that is flattened into a 1000-dimensional vector. A single dense layer is used on
top of this latent layer that outputs the scalar class as a real in the range [0, 1]. The Keras’s 100-to-10 embedding layer has
120 parameters and the 1000-to-1 dense layer has 1001 parameters resulting in 1121 number of parameters in total.

F. Details of random / semi-random simulations
Reward signal is necessary for any learning in MDPs. The goal of the RL task of this paper is to apply a sequence of
mathematical modifications on some mathematical expressions to reduce the cost of that expression. Unfortunately, the
reward space is not dense here. Many sequences of modifications may not change the cost (or even increase the cost)
of the expressions for a couple of steps before the expression with the minimum cost is obtained. For example, Fig. 5
shows a sequence of actions applied on the expression einit that first increases the cost but finally results in reduced cost
which is indeed minimum. This makes the learning process immensely difficult because the unchanged or increased cost
in intermediate steps may result in early disappointment. To mitigate this problem, the initial (input, output) pairs to train
the value function is created by applying several sequences of purely random (but of course legal) actions on the initial
expression. This process is sometimes called simulation phase in the literature and has turned out to be effective when
the model of the environment is given (e.g. in games like Chess (Silver et al., 2017a)). Assume few episodes out of many
randomly simulated episodes arrive at expressions with reduced cost. We then update the value function to regress from all
expressions in a successful episode to the achieved advantage signal c(einit)− c(einit). With a slight abuse of terminology,
we have used value instead of advantage throughout the paper even though the way it is computed as the difference between
the cost of the current and the final expressions is more aligned with the definition of the advantage function. This process
gives the value function some idea about the goodness of expressions in the process of simplification. This knowledge is
then used to bias the exploration when the agent wants to solve the expression of the second generation. We observed that
the success rate (ratio of successful episodes) increased considerably in this case showing that the initial knowledge distilled
in the value function of the previous generation favors the random episodes in the right direction. The bias is imposed by a
mixture of uniform and Boltzmann distributions where the energy function of the Boltzmann distribution is proportional to
the negative value function. This becomes an alternating process of cumulatively learning the value function, and use it to
make the exploration more efficient and generate more data points to improve the value function further. Continuing this
process results in a curriculum-learning approach in the sense that we need to start with simpler expressions such that it
is feasible to arrive at some rewarding states by applying random actions on them for a reasonable number of times. The
resultant few successful episodes are distilled in the value function and indirectly helps to increase the ratio of successful
episodes for the expressions of subsequent generations. We call it semi-random since the choice of actions at each step is
biased by the knowledge that the value function has accumulated so far.

G. Details of the Value function
For the RL task, we implement the value function as a regressor from states (expressions) to reals, i.e., V : E → R where E
is the space of all expressions. Similar to other value function-based RL, the value function must capture the goodness of
each state in terms of the long-run return (accumulated discounted reward). The target for the parameterized value function
is determined by the simulations as described in Section. F. The regressor function V̂ (·;θV ) maps the GNN representation
of the current state (expression) he to the maximum advantage achieved in this episode. In practice, the result of several
simulations is saved in a dataset {(en, rn)}Nn=1 consisting of (expression, success rate) pairs and the following loss function
is optimized to update the parameters of the value function

θ∗V = argmin
θV

‖V̂ (hen ;θV )− rn‖22 (3)

where hen is the representation of the expression en produced by the trained GNN up to this point in the algorithm. Notice
that the value function is updated for all the expressions that appear in the episode.
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Figure 5. An example of the simplification process with temporary increase in cost. Notice that there exist another sequence of action that
does not result in the increase in cost but we can easily think of scenarios that simplification of mathematical expressions requires adding
and subtracting some terms that leads to temporary increase in the cost.

H. Details of the RL task
Currently, we don’t have a method to encode the actions (rules) in our learning algorithm. Therefore, learning value-action
function Q(e, a) instead of the value function V (e) requires considerably more samples. This is due to the fact that not being
able to encode the actions, makes it impossible to transfer knowledge from a pair (e, a1) to pair (e, a2). Simply speaking,
if we need N samples to approximate V (e), we need roughly |A(e)|N samples to approximate Q(e, a) with comparable
accuracy. Therefore, to decide the action to take at state (expression) e, the outcome of every action is produced first and
the value function is evaluated for each of the products. The action is then taken according to the mixture distribution
Uniform(a) + p(a|e) where p(a|e) is the Boltzmann distribution defined as

p(a|e) =
e
V (e′)
τ

∑
e′′∈S(e,a)

e
V (e′′)
τ

(4)

where S(e, a) = {s̄|ē = M(e, a), ∀a ∈ A(e)} and τ is a scale hyperparameter which is set to 1 in our experiments. Notice
that the environment model M(e, a) is a deterministic function M : E × A → E which applies action a on the expression e
and produces the resultant expression. M simply encodes the rules of mathematics. In the terminology of RL, M is the
dynamical model of the environment.

H.1. Mathematical Rules

In the following, we describe two sets of rules as the manipulations on mathematical expressions which is the action space
of the RL task.

Table 2. The set of algebraic rules to modify mathematical expressions

Algebraic Rules

Name Description

a
a ≡ 1 Self-Division

a ∗ 1 ≡ a Multiplication by 1

(a+ b)− c ≡ (a− c) + b Threefold commutativity

a± 0 ≡ a Addition / Subtraction by 0

5 ∗ 4 ≡ 20 Evaluating numeric values

a� b ≡ b� a;� ∈ {+,−, ∗} Commutativity of addition, subtraction, and multiplication

a ∗ b+ a ∗ c ≡ a ∗ (b+ c) Distributive property of multiplication to addition
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Table 3. The set of binding rules to modify mathematical expressions.

Binding Rules

LHS RHS Description

op(f(x), g(x)) let a := f(x) in op(a, g(x)) Extracting a subexpression out of an operator

op(x, let a := f(x) in g(a)) let a := f(x) in op(x, g(a)) Bind-Extracting a subexpression out of an operation

let a := f(x) and b := f(x) in op(a, b, g(x)) a := f(x) in g(a, a, g(x)) Binding two equivalent subexpressions

In the following, two sample episodes of simplification by means of the above rules are presented.

H.2. An example of the simplification by binding rules

[(1.0/x)/((1.0/x) + (1.0/x)),

((1.0/x)/((1.0/x) + (var0 := (1.0/x) in var0))),

((1.0/x)/(var0 := (1.0/x) in ((1.0/x) + var0))),

(var0 := (1.0/x) in ((1.0/x)/((1.0/x) + var0))),

(var0 := (1.0/x) in ((var1 := (1.0/x) in var1)/((1.0/x) + var0))),

(var0 := (1.0/x) in (var1 := (1.0/x) in (var1/((1.0/x) + var0)))),

(var0 := (1.0/x) in (var0/((1.0/x) + var0))),

(var0 := (1.0/x) in (var0/((var1 := (1.0/x) in var1) + var0))),

(var0 := (1.0/x) in (var0/(var1 := (1.0/x) in (var1 + var0)))),

(var0 := (1.0/x) in (var1 := (1.0/x) in (var0/(var1 + var0)))),

(var0 := (1.0/x) in (var0/(var0 + var0)))]

H.3. An example of the simplification by algebraic + binding rules

[((1.0/x)/(1.0 + (1.0/(x+ 0.0)))),

((var0 := (1.0/x) in var0)/(1.0 + (1.0/(x+ 0.0)))),

((var0 := (1.0/x) in var0)/(1.0 + (1.0/(0.0 + x)))),

((var0 := (1.0/x) in var0)/(1.0 + (1.0/x))),

(var0 := (1.0/x) in (var0/(1.0 + (1.0/x)))),

(var0 := (1.0/x) in (var0/(1.0 + (var1 := (1.0/x) in var1)))),

(var0 := (1.0/x) in (var0/(var1 := (1.0/x) in (1.0 + var1)))),

(var0 := (1.0/x) in (var1 := (1.0/x) in (var0/(1.0 + var1)))),

(var0 := (1.0/x) in (var0/(1.0 + var0)))]


