
Factorised Neural Relational Inference for Multi-Interaction Systems

Ezra Webb 1 * Ben Day 2 * Helena Andres-Terre 2 Pietro Lió 2

Abstract

Many complex natural and cultural phenomena
are well modelled by systems of simple interac-
tions between particles. A number of architec-
tures have been developed to articulate this kind
of structure, both implicitly and explicitly. We
consider an unsupervised explicit model, the NRI
model, and make a series of representational adap-
tations and physically motivated changes. Most
notably we factorise the inferred latent interaction
graph into a multiplex graph, allowing each layer
to encode for a different interaction-type. This
fNRI model is smaller in size and significantly
outperforms the original in both edge and trajec-
tory prediction, establishing a new state-of-the-art.
We also present a simplified variant of our model,
which demonstrates the NRI’s formulation as a
variational auto-encoder is not necessary for good
performance, and make an adaptation to the NRI’s
training routine, significantly improving its ability
to model complex physical dynamical systems.

1. Introduction & Related Work
There are interesting phenomena at every physical scale
that are well described by dynamical systems of interacting
particles. Thinking about things in this way has proven to
be a valuable method for investigating the natural world. As
we come to develop more intelligent systems to assist in
our investigations, the ability to work within this framework
will be of great use.

Many systems have been developed to model interactions
implicitly with either single-layer fully connected graphs
(Sukhbaatar et al., 2016; Guttenberg et al., 2016; Santoro
et al., 2017; Watters et al., 2017) or with attention-based con-

*Equal contribution 1Department of Physics, The Cavendish
Laboratory, University of Cambridge, UK. 2Department of Com-
puter Science & Technology, The Computer Laboratory, Uni-
versity of Cambridge, UK.. Correspondence to: Ben Day
<ben.day@cl.cam.ac.uk>.

Accepted for presentation at the ICML 2019 Workshop on Learn-
ing and Reasoning with Graph-Structured Data Copyright 2019 by
the author(s).

trol mechanisms (Hoshen, 2017; van Steenkiste et al., 2018).
However, to the end of developing an investigative or the-
orising machine assistant, modelling the interaction graph
explicitly is more valuable than a high quality trajectory-
reconstruction. The neural relational inference (NRI) model,
introduced by Kipf et al. (2018b), is an unsupervised neural
network that learns to predict the interactions and dynamics
of a system of objects from observational data alone. When
provided with the trajectories of a system of interacting ob-
jects, the model infers an explicit interaction graph for these
objects which it uses to predict the evolution of the system.

The NRI model presents a strong foundation, answering
key architectural questions and opening the door for further
work dealing with explicit representations. In this work
we identify two problems within the original formulation –
representational and experimental – and in addressing these
develop a model that significantly outperforms the origi-
nal. We also present a variant of our model with greatly
improved trajectory prediction that demonstrates the NRI
model’s formulation as a variational auto-encoder (VAE) is
not necessary for good performance.

Specifically, in a system with multiple independent interac-
tions, representing the interaction relationships as a single
graph with many edge-types requires exponentially many
types to accommodate all possible combinations of interac-
tions. Critically, feedback in such a system is unable to dis-
tinguish partially correct and entirely incorrect predictions.
In this work we adopt a multiplex structure wherein different
interactions are factorised into separate layer-graphs, greatly
compressing the representation whilst also permitting better
directed feedback and improved training.

1.1. NRI in brief

We provide an outline of the NRI architecture with formal
definitions given only for those parts that we modify1. We
adopt the formalism and nomenclature of Kipf et al. (2018b)
throughout.

Most simply, the NRI takes the form of a variational-
autoencoder (VAE): trajectories are encoded as a latent
interaction graph that is decoded when predicting trajec-

1An extended description with original diagrams is provided
as supplementary material.

Factorised Neural Relational Inference

tories for given initial conditions. A trajectory is a series of
features over time, where xti is the feature vector of the i-th
object at step t. The latent interaction graph has K-many
edge-types encoded as one-hot vectors, where zij is the
edge-type vector between nodes (objects) i and j.

Encoder The encoder receives each particle’s trajectory
as the feature of its corresponding node in a fully-connected
graph and produces an edge-type vector for each pair of
particles. A graph neural network (GNN) computes a series
of message passing operations (Gilmer et al., 2017) and
produces a K-dimensional edge-embedding vector h2

(i,j)

for each pair of particles (i, j).2

Posterior distribution The edge-type posterior distribu-
tions are taken as qθ(zij |x) = softmax(h2

(i,j)), from which
the edge-type vectors zij are sampled, where θ summarizes
the parameters of the full encoder GNN.

Decoder The task of the decoder is to predict the dynam-
ics of the system using the latent interaction graph z and the
past dynamics. We consider the Markovian case; calculating
pφ(x

t+1|xt; z). The message passing section consists of

v → e : h̃t(i,j) =

K∑
k=1

zij,kf̃
k
e

(
[xti,x

t
j]
)

(1)

e→ v : µt+1
j = xtj + f̃v

([∑
i 6=j h̃

t
(i,j),x

t
j

])
(2)

where [·, ·] denotes concatenation. We note that each edge-
type k has its own function in the edge-to-vertex message
passing operation – f̃1e , . . . , f̃

K
e . The future state of each ob-

ject is then sampled from an isotropic Gaussian distribution
with fixed (user-defined) variance σ2

pφ(x
t+1
j |xt, z) = N (µt+1

j , σ2I).

Objective The model is trained as a VAE maximising the
evidence lower bound

L = Eqθ(z|x)[log pφ(x|z)]−DKL[qθ(z|x)||p(z)] (3)

where DKL is the Kullback-Leibler (KL) divergence. It is
also relevant to note that the reconstruction error is estimated
by a re-scaled mean-squared error (MSE) of µ relative to x.3

2. Model
2.1. Factorised Neural Relational Inference

Here we introduce our reformulation of the NRI model
which we will refer to as the factorised neural relational

2h2
(i,j) is used to align with the original paper’s notation.

3Re-scaled by the hyperparameter 1
2σ2 (plus a constant).

inference (fNRI) model. In this model the NRI’s single la-
tent interaction graph with K edge-types is factorised into
an n-layer multiplex graph (see figure 1), where the a-th
layer-graph has Ka edge-types.

The K-dimensional edge-embedding vector h2
(i,j) returned

by the NRI encoder (as in equation ??) is first segmented

h2
(i,j) =

[
h2,1
(i,j), . . . ,h

2,n
(i,j)

]
(4)

where segment h2,a
(i,j) is a Ka-dimensional vector and K =∑n

a=1Ka is the total number of edge types. The posterior
distribution for each layer-graph is then formed as

qθ(z
a
ij |x) = softmax(h2,a

(i,j)) (5)

where zaij denotes the one-hot edge-type vector between
objects i and j in the a-th layer-graph. As in the NRI, during
training the vectors are sampled from a ‘continuous relax-
ation’ of their respective posterior distributions using the
concrete distribution (Maddison et al., 2017)

zaij = softmax
(
(h2,a

(i,j) + g)/τ
)
.

where g ∈ RKa is a vector of i.i.d samples drawn from
a Gumbel(0, 1) distribution and τ is the ‘softmax temper-
ature.’ Concatenating these vectors forms the combined
edge-type vector of the multiplex interaction graph

zij = [z1ij , ..., z
n
ij]. (6)

These zij are no longer one-hot vectors, but rather multi-
categoric with

∑
k zij,k = n, and are supplied to the NRI

decoder as described in 1.1. In alignment with the NRI
model, the latent graphs are not forced to be undirected
(zij may not necessarily equal zji), and if desired, the first
edge-type of each layer-graph can be hard-coded as the non-
edge. The KL-divergence term in the ELBO is the sum of
KL-divergences over the layer-graphs.

DKL[qθ(z|x)||p(z)] =
n∑
a=1

DKL[qθ(z
a|x)||p(za)] (7)

2.1.1. MOTIVATIONS

We now expand on the motivations given earlier in light of
the model specifications. As the NRI uses a one-hot latent en-
coding, in multi-interaction systems single edge-types must
exist to represent any possible combination of interactions
(e.g. spring+charge). In contrast, the fNRI edge-types need
only encode for one interaction-type, with combinations
arising naturally from the multiplex structure. The edge-
type decoder networks f̃ke in equation (1) therefore only
need to decode the dynamics of a single type of interaction.
We theorise this compartmentalisation of the interactions
will improve training in complex systems, especially given

Factorised Neural Relational Inference

Figure 1. Schematic showing the representational change in the interaction graph between the NRI and fNRI models when there are three
independent interaction types represented by solid, dashed and dotted lines, in addition to no interaction, represented by thin grey lines. In
the NRI model, the possible combinations of interactions require eight (= 23) edge-types.

that each of the networks f̃ke will effectively have a larger
training set in our formulation. This is because the f̃ke are
used by the decoder in every instance that its corresponding
interaction is present, rather than when a specific combina-
tion of interactions is present, as in the NRI. Or in other
words, because the density of the latent representation is
exponentially greater in the fNRI model. This increase in
latent information density also means that factorised model
decoders have notably fewer parameters.

In addition, the fNRI model has the capacity to be explic-
itly fractionally correct about an edge-type. If the encoder
correctly predicts one underlying interaction type, but the
other incorrectly, in the NRI model the corresponding zij is
plainly ‘incorrect’. However in the fNRI model, the corre-
sponding zij will be half-right and treated accordingly, in
theory allowing for better directed feedback.

Compartmentalising interactions in the fNRI model will also
be useful when attempting to understand the meanings of
edge-types in systems where the underlying interactions
are unknown. An issue that could be raised with the fNRI
model is that in such contexts, due to having {K1, ...,Kn}
edge-types rather than just K, the dimensionality of the
hyperparameter space has been increased. However, picking
Ka = 2 for all a allows for the same dimensionality while
retaining all functionality, where interactions with more than
two discrete edge-types (e.g. colour-charge) are encoded
over multiple layer-graphs.

2.2. Sigmoid Factorisation

We also investigate a drastic simplification of the fNRI
model, where each layer-graph effectively only contains
a single edge-type and probabilistic sampling is removed
completely. In this sfNRI model, rather than using the edge-
embedding vectors h2

(i,j) returned by the encoder to form
posterior distributions, they are directly transformed into
K-dimensional edge-type vectors by a sigmoid function
zij = σ(h2

(i,j)). These zij are then decoded using the same
decoder described in section 1.1. In this model there are K
layer-graphs, each of which contains a single edge-type, in

addition to an explicit non-edge.

As the sampling aspect of the model is removed, the ele-
ments of the edge-type vectors zij,k are no longer strictly
binary elements of {0, 1}, but rather are elements of [0, 1].
Furthermore, it is no longer possible to define a KL-
divergence so the loss function is just the reconstruction
error – a rescaling of the mean squared error between the
predicted and ground-truth trajectories.

The motivations here are much the same as for the fNRI;
allow each element of the edge-type vector zij to represent
a separate interaction edge that can be observed in combi-
nation. Additionally, the non-interaction edge becomes a
more fundamental part of the model. When there are no
interactions between a pair of particles, the ground truth
edge-vector will, in theory, be all zeros, zij = 0. This fol-
lows as if a particle has no interactions, then the elements
of the vector

∑
i 6=j h̃

t
(i,j) in equation (2) will all be zero,

and the only non-zero entries to the neural network f̃v will
be the current state of the particle xtj . This means that the
non-interaction graph (where there are no interactions be-
tween particles) is made explicit by the very architecture of
the model, as z will contain only zeros and therefore each
particle’s predicted future state µt+1

j can only depend on its
current state xtj .

3. Experiments
To make our comparison with the original NRI model as
convincing as possible, unless otherwise stated we use the
exact same hyperparameters as detailed in the original paper
(Kipf et al., 2018b), full details of which can be found in the
supplementary material. The only change we make to the
training routine is discussed in section 3.1.4

We experiment with simulated systems of 5 interacting par-
ticles in a finite 2D box. In these systems particles are
‘randomly connected’ by different physical interactions. We

4Our implementation is available in full at https://
github.com/ekwebb/fNRI.

https://github.com/ekwebb/fNRI
https://github.com/ekwebb/fNRI

Factorised Neural Relational Inference

Table 1. Accuracy (%) in recovering the ground truth interaction graph. Higher is better.
I-Springs+Charges I-Springs+Charges+F-springs

Accuracy Combined I-Springs Charges Combined I-Springs Charges F-Springs

Random 25.0 50.0 50.0 12.5 50.0 50.0 50.0
NRI (learned) 89.1 ± 0.4 97.9± 0.0 91.0± 0.4 57.9 ± 6.1 88.5± 0.9 87.3± 6.2 70.7± 2.3
fNRI (learned) 94.0± 1.4 98.0± 0.1 95.8± 1.3 63.3± 6.5 86.9± 2.7 97.7± 0.7 69.2± 5.5
sfNRI (learned) 88.8 ± 0.8 97.6± 0.1 91.1± 0.8 45.1 ± 5.1 90.0± 2.3 98.2± 0.8 52.4± 2.7

NRI (supervised) 98.3± 0.0 98.6± 0.0 99.7± 0.0 80.9 ± 0.7 92.4± 0.3 99.0± 0.1 84.4± 0.4
fNRI (supervised) 98.3± 0.0 98.8± 0.4 99.4± 0.4 81.8± 0.1 93.3± 0.1 99.3± 0.0 85.8± 0.1
sfNRI (supervised) 98.0 ± 0.0 98.3± 0.0 99.6± 0.0 81.0 ± 0.3 92.9± 0.1 99.2± 0.0 85.2± 0.2

Table 2. Mean squared error (MSE) / 10−5 in trajectory prediction. Lower is better.

I-Springs+Charges I-Springs+Charges+F-Springs

Predictions Steps 1 10 20 1 10 20

Static 19.4 283 783 12.8 274 782
NRI (learned) 0.88 ± 0.06 4.05 ± 0.22 11.5 ± 0.5 0.95 ± 0.05 8.67 ± 0.45 29.1 ± 1.4
fNRI (learned) 0.80± 0.04 3.54 ± 0.09 9.93 ± 0.29 0.81 ± 0.05 7.78 ± 0.20 26.8 ± 0.8
sfNRI (learned) 1.03 ± 0.09 3.32± 0.23 9.68± 0.74 0.77± 0.03 5.69± 0.21 19.3 ± 0.8

NRI (true graph) 0.85 ± 0.04 1.59 ± 0.26 3.20 ± 0.15 0.75 ± 0.02 1.55 ± 0.07 3.43 ± 0.21
fNRI (true graph) 0.70± 0.03 1.30± 0.06 2.52± 0.11 0.51± 0.05 0.97 ± 0.08 2.44 ± 0.28
sfNRI (true graph) 0.86 ± 0.09 1.32 ± 0.06 2.77 ± 0.07 0.56 ± 0.04 0.89± 0.06 2.28± 0.15

consider three different types of physical interaction: ideal
springs (I-springs) where particles are randomly connected
by Hookean springs of zero length, finite springs (F-springs)
where particles are randomly connected by Hookean springs
of a fixed finite length, and charges where particles are ran-
domly selected to be either positively charged or neutral,
and charged particles interact via Coulomb’s law.

3.1. Compression Models

A problem we encounter with the NRI training routine is that
when attempting to learn more complex interaction graphs,
the encoder can instead learn to use the latent space to store
a compressed version of the input trajectories. It appears
that this can occur to a varying degree, however the problem
worsens as the size, and thus the expressiveness, of the latent
space increases. These models are easily identified during
testing as they are non-predictive, meaning they can only
reconstruct the trajectories the encoder received as input.

In order to avoid these compression models, we modify the
training routine such that the encoder receives the first half
of the particle trajectories, and the decoder predicts the sec-
ond half of the particle trajectories. For interacting systems
with static interaction graphs, this change is reasonable,
and has a number of distinct advantages. Firstly, compres-
sion solutions are avoided as the models are now trained
to predict unobserved trajectories, only. As such, training
becomes significantly more reliable and far less dependent
on the model initialisation. Secondly, the difference in the

reconstruction loss between the training and validation sets
is reduced, and we observe a reduction in overfitting. Mak-
ing this change means the network is formally no longer
acting as an auto-encoder, as the decoder network does not
learn by reconstructing the encoder input x, but rather by
generating a time-evolution of x, which is then compared to
the ground-truth time-evolution. We use this modification
when training all the models presented here. Without it,
training is simply not reliable enough, with edge-accuracies
often failing to rise above the random level.

4. Results
The edge and trajectory prediction results are summarised in
tables 1 and 2 respectively, where each result is the average
over 5 runs with the standard error given. In all cases the
factorised NRI models match or outperform the original.

For both edge and trajectory prediction, we compare the
unsupervised learned models to the supervised ‘gold stan-
dards.’ For edge prediction the supervised encoders are
trained in isolation on the ground-truth interaction graphs,
and for trajectory prediction the true graph decoders are
trained in isolation with the ground-truth interaction graphs
their inputs. The static decoder simply returns the state
vector it receives as input. For edge prediction, accuracies
are decomposed into the prediction accuracy for each in-
teraction type. The combined accuracy is calculated such
that it only receives a contribution when the predicted edges
between a pair of nodes are correct for all interaction types.

Factorised Neural Relational Inference

Acknowledgements
We would like to thank Thomas Kipf, Ethan Fetaya, Kuan-
Chieh Wang, Max Welling & Richard Zemel for making
the codebase for the NRI model (Kipf et al., 2018b) publicly
available. This work was made possible by their commit-
ment to open research practices. We would also like to thank
the developers of PyTorch (Paszke et al., 2017).

References
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,

and Dahl, G. E. Neural message passing for quan-
tum chemistry. In Precup, D. and Teh, Y. W. (eds.),
Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 1263–1272, International
Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.
press/v70/gilmer17a.html.

Guttenberg, N., Virgo, N., Witkowski, O., Aoki, H., and
Kanai, R. Permutation-equivariant neural networks ap-
plied to dynamics prediction. 12 2016. URL http:
//arxiv.org/abs/1612.04530.

Hoshen, Y. VAIN: Attentional Multi-agent Predictive Mod-
eling. 6 2017. URL http://arxiv.org/abs/
1706.06122.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. 12 2014. URL http://arxiv.org/
abs/1412.6980.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural Relational Inference for Interacting Systems.
2 2018a. URL http://arxiv.org/abs/1802.
04687.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural Relational Inference for Interacting Systems.
2 2018b. URL http://arxiv.org/abs/1802.
04687.

Maddison, C. J., Mnih, A., and Teh, Y. W. The Concrete
distribution: a continuous relaxation of discrete random
variables. 2017. URL http://arxiv.org/abs/
1611.00712.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS-W,
2017.

Santoro, A., Raposo, D., Barrett, D. G. T., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple
neural network module for relational reasoning. 6 2017.
URL http://arxiv.org/abs/1706.01427.

Sukhbaatar, S., Szlam, A., and Fergus, R. Learning Mul-
tiagent Communication with Backpropagation. 5 2016.
URL http://arxiv.org/abs/1605.07736.

van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber,
J. Relational Neural Expectation Maximization: Unsuper-
vised Discovery of Objects and their Interactions. 2 2018.
URL http://arxiv.org/abs/1802.10353.

Watters, N., Tacchetti, A., Weber, T., Pascanu, R., Battaglia,
P., and Zoran, D. Visual Interaction Networks. 6 2017.
URL http://arxiv.org/abs/1706.01433.

http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
http://arxiv.org/abs/1612.04530
http://arxiv.org/abs/1612.04530
http://arxiv.org/abs/1706.06122
http://arxiv.org/abs/1706.06122
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1802.04687
http://arxiv.org/abs/1802.04687
http://arxiv.org/abs/1802.04687
http://arxiv.org/abs/1802.04687
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1605.07736
http://arxiv.org/abs/1802.10353
http://arxiv.org/abs/1706.01433

Factorised Neural Relational Inference for Multi-Interaction Systems:
Supplementary Material

Overview
These supplementary materials are provided to support the
workshop paper ‘Factorised Neural Relational Inference for
Multi-Interaction Systems’ published at the Learning and
Reasoning with Graph-Structured Data workshop at ICML
2019.

The materials include an extended description of the NRI
model in section 5, details of the physics simulations and
experimental procedures in sections 6 and 7, and a note on
calculating edge accuracy in unsupervised systems is added
in section 8.

5. Neural Relational Inference
Here we describe the NRI model as presented by Kipf et al.
(2018a) along with our own schematic and comments. Here
we provide an extended description of the NRI model; adopt-
ing the formalism and nomenclature of Kipf et al. (2018a)
throughout. The NRI model takes the generalised form of a
variational auto-encoder (VAE), where the encoding network
infers a latent interaction graph for the system, and the de-
coding network predicts the future dynamics of the system
using this interaction graph. This graph is described by a
set of edge-types z (the latent variables of the VAE) which
tell the decoding network about the types of interactions
between each pair of particles.

The NRI model differs from the standard VAE implemen-
tation in a number ways. Most notably, it does not use a
continuous isotropic multivariate Gaussian distribution as
its prior. Rather, its prior distribution is discrete; and the
encoder returns a probability vector for the edge-type be-
tween each pair of particles. The edge-types z in the latent
interaction graph are then sampled from these probability
vectors (see figure 2).

In order for the NRI model to be successful in predicting the
future dynamics of a system, the underlying interactions of
the system must be discrete. In the context of physics, this
means that the interactions must be discrete in both form
and strength. For example, if we have a box containing a
collection of interacting charged particles, the NRI model
has the potential to successfully model the dynamics of this
system provided the strengths of the charges are picked from
some finite set, rather than being picked from a continuum.
The reason for this is that the number of edge-typesK in the

latent interaction graph, is a hyperparameter of the model
and represents the number of distinct ‘interaction types’ the
model will be able to encode for. If the strength of the
charges are drawn from a continuum, although interactions
will be discrete in form (with all the forces between particles
being proportional to the inverse square of their separation),
an interaction graph cannot be drawn for the system using a
discrete set of edge-types.5

In the latent interaction graph, the edge-type between ob-
jects i and j is encoded for using a one-hot vector of
length K, denoted zij . This means each edge in the in-
teraction graph is one of K discrete edge-types, formalised
as
∑K
k=1 zij,k = 1, where zij,k ∈ {0, 1} denotes the k-th

element of the vector zij .

5.1. Message Passing Operation

The encoding and decoding networks in the NRI model
are described as graph neural networks (GNNs). These are
a broad class of artificial neural networks which operate
on graph structured data and are defined by their use of
the ‘message passing’ operation introduced by Gilmer et
al. (2017). For a graph G = (V, E) with vertices v ∈ V
and edges e = (v, v′) ∈ E , where vertex vi has features
xi and edge e(i,j) has features x(i,j), a single node-to-node
message passing operation is defined as

v → e : hl(i,j) = f le
([
hli,h

l
j ,x(i,j)

])
(8)

e→ v : hl+1
j = f lv

([∑
i∈Nj h

l
(i,j),xj

])
(9)

where hlj is the embedding of the features of vertex vi in
layer l of the GNN and hl(i,j) is the embedding of the fea-
tures of edge e(i,j) in layer l of the GNN. These edge feature
embeddings are sometimes referred to as a ‘messages’. Nj
denotes the set of indices of vertices which are connected
to vertex vj by an incoming edge, and [·, ·] denotes con-
catenation of vectors. The functions fv and fe are node-
and edge-specific neural networks respectively, for exam-
ple small multi-layer perceptrons (MLPs). We note that the
message passing operation operates on the edge and node
features, and does not alter the shape of the graph.

5At least one cannot be drawn using a set of edge-types that is
smaller than the total number of edges in the interaction graph.

Factorised Neural Relational Inference

Figure 2. Schematic of the batch-wise NRI training procedure, where the dashed arrows with δ s indicate backpropagation. The system in
the schematic has 5 interacting particles and three inferred edge-types. In the latent interaction graph z these three different edge-types are
represented by sinusoidal lines, curly lines and thin grey lines.

5.2. Encoder

The input of the encoder consists of the trajectories of N
objects. We denote the feature vector of object i at time
t by xti; in our work this vector contains the location and
velocity of the particle. We denote the set of all N objects
at time t by xt = {xt1, ...,xtN}, the trajectory of object
i by xi = (x1

i , ...,x
T
i) and the set of all trajectories by

x = (x1, ...,xT), where T is the total number of time steps.

The trajectory of each particle enters the encoder as the
features of a node in a fully-connected graph of N nodes,
where each node represents one of the interacting objects.
Using the message passing operations defined in section
5.1, the action of the encoding network on this graph can be

defined as follows:

h1
i = femb(xi) (10)

v → e : h1
(i,j) = f1e

([
h1
i ,h

1
j

])
(11)

e→ v : h2
j = f1v

(∑
i 6=j h

1
(i,j)

)
(12)

v → e : h2
(i,j) = f2e

([
h2
i ,h

2
j

])
(13)

The edge-type posterior distributions are then taken as
qθ(zij |x) = softmax(h2

(i,j)), where h2
(i,j) ∈ RK and θ

summarizes the parameters of the neural networks in equa-
tions (10)-(13). By studying equations (10)-(13), it can be
noted that as the input graph is fully connected, the node
embeddings h2

j and subsequent edge embeddings h2
(i,j) are

influenced by the trajectories of all the particles in the sys-
tem.

Factorised Neural Relational Inference

The neural networks femb, f1e and f1v are 2-layer MLPs with
hidden and output dimension 256, batch normalization, and
ELU activations. The last neural network f2e has these same
properties with the addition of an extra dense layer of output
dimension K.

5.3. Sampling

A softmax function is used to transform the edge feature em-
bedding h2

(i,j) into a posterior distribution qθ(zij |x). How-
ever, sampling directly from this distribution is not a differ-
entiable process. To circumvent this problem, the NRI model
uses a ‘continuous relaxation’ of the discrete posterior dis-
tribution in the form of the concrete distribution (Maddison
et al., 2017), which reparametrises the sampling using the
Gumbel distribution. This means rather than sampling the
edge-type vectors zij directly from posterior as

zij ∼ qθ(zij |x) = softmax(h2
(i,j)) (14)

The edge-type vectors are sampled using

zij = softmax
(
(h2

(i,j) + g)/τ
)

(15)

where g ∈ RK is a vector of independent samples drawn
from a Gumbel(0,1) distribution and τ is the softmax tem-
perature. This is a continuous relaxation of the discrete pos-
terior distribution qθ(zij |x) as the edge-type vectors zij re-
turned by equation (15) are not one-hot, but rather smoothly
converge to one-hot vectors sampled from qθ(zij |x) in the
limit τ → 0.

5.4. Decoder

The task of the decoder is to predict the future dynamics
of the system using the latent interaction graph and the
past dynamics. Formally, this means calculating the likeli-
hood pφ(xt+1|xt; ...;x1; z). In our work we only consider
systems where the dynamics are Markovian, meaning the
dependence in the likelihood reduces to pφ(xt+1|xt; z).
In the NRI model, each edge-type has a separate neural
network in the edge-to-vertex message passing operation.
The message passing section of the Markovian decoder is
formalised as:

v → e : h̃t(i,j) =

K∑
k=1

zij,kf̃
k
e

(
[xti,x

t
j]
)

(16)

e→ v : µt+1
j = xtj + f̃v

([∑
i 6=j h̃

t
(i,j),x

t
j

])
(17)

The future state of each object is then sampled from an
isotropic Gaussian distribution with a mean vector µt+1

j

and a fixed (user-defined) variance σ2:

pφ(x
t+1
j |xt, z) = N (µt+1

j , σ2I) (18)

Note that in equation (16), when the edge-type vector zij is
one-hot, h̃t(i,j) only receives a contribution from the neural
network representing the ‘hot’ edge-type, but for continuous
relaxations, the message is a weighted sum. We note that
the first edge-type can be ‘hard-coded’ to be the non-edge,
representing no interaction between particles, by modifying
the sum in equation (16) to start at k = 2.

When the dynamics of the system are not Markovian, a re-
current neural network can be used in the decoder to use the
full history of the particle in predicting its future dynamics.

5.5. Training

The NRI model takes the form of a variational auto-encoder
and it is therefore trained to maximise the evidence lower
bound

L = Eqθ(z|x)[log pφ(x|z)]−DKL[qθ(z|x)||p(z)] (19)

where the likelihood pφ(x|z) can be expanded as pφ(x|z) =∏T
t=1 pφ(x

t+1|xt; z), and the prior p(z) =
∏
i 6=j p(zij)

is generally a factorised uniform distribution over edge-
types. For a uniform prior, p(zij,k) = 1/K, the overall
KL-divergence in the ELBO function is given by

DKL[qθ(z|x)||p(z)] =
∑
i 6=j

[
−H

[
qθ(zij |x)

]
+ logK

]
(20)

where H
[
qθ(zij |x)

]
is the entropy of the posterior distri-

bution qθ(zij |x). The reconstruction error in the ELBO is
estimated by

Eqθ(z|x)[log pφ(x|z)] = −
∑
j

T∑
t=2

||xtj − µtj ||2
2σ2

+ const

(21)

This reconstruction error only depends on single time step
predictions. However, the interactions between objects often
only have a small effect on the short term dynamics. This
means the decoder could quite easily learn to ignore the
latent interaction graph, whilst achieving only a marginally
worse reconstruction error. In order to avoid these ‘de-
generate’ decoders, the NRI model predicts the dynamics
multiple time-steps in to future. Denoting the decoder as
µt+1
j = fdec(x

t
j), the NRI model implements this by replac-

ing the actual system state xt with the previous predicted
mean state µtj for M time-steps. Doing this means that any
errors in the reconstruction accumulate overM steps, which
makes correctly predicting the latent interaction graph es-
sential for maximising the ELBO. This procedure can be

Factorised Neural Relational Inference

formalised as

µ2
j = fdec(x

1
j)

µt+1
j = fdec(µ

t
j) t = 2, ...,M

µM+2
j = fdec(x

M+1
j)

µt+1
j = fdec(µ

t
j) t =M + 2, ..., 2M

...

If we have some prior knowledge of the system, this can
be included in the form a non-uniform prior. For example,
when the first edge-type is hard-coded to be the non-edge, a
non-uniform prior with a higher probability on the non-edge
could be used to encourage sparser graphs.

6. Simulations
In accordance with the work by Kipf et al. (2018a), we
simulate N = 5 point mass particles in a finite 2D box,
where collisions with the box wall are elastic and there are
no external forces. The initial locations of the particles are
sampled from a Gaussian distribution N (0, 0.5), and the
initial velocity of each particle is a random vector with norm
0.5. We consider 3 different types of particle interactions in
this investigation:

Ideal spring interactions where particles connected by
an ideal spring are acted on by forces given by Hooke’s law

Fij = −kI(ri − rj) (22)

where Fij is the force applied to particle i by particle j, kI
is the spring constant, and ri is the 2D location vector of
particle i. These are ‘ideal springs’ (I-springs) because they
have zero length and are therefore only attractive.

Finite spring interactions where particles connected by
a finite length spring are acted on by forces given by a
modified Hooke’s law

Fij = −kF
(
ri − rj − l ·

ri − rj
|ri − rj |

)
(23)

where kF is the spring constant and l is the spring length.
The forces these finite length springs (F-springs) generate
between particles can be attractive or repulsive.

Charge interactions where charged particles are acted
on by forces given by Coulomb’s Law

Fij = qiqjC ·
ri − rj
|ri − rj |3

(24)

where C is a positive constant and qi is the charge of par-
ticle i. Due to the simulation instabilities that arise when

0.0 0.2 0.4

0.0

0.1

0.2

0.3

0.4

0.5

−0.2 0.0 0.2

−0.1

0.0

0.1

0.2

0.3

−0.2 0.0 0.2
−0.4

−0.3

−0.2

−0.1

0.0

0.1

−0.4 −0.2 0.0

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Figure 3. Trajectories of four sets of 5 interacting particles in the
I+C system for 50 time-steps, where the predicted trajectories
are solid lines, the ground truth trajectories are dashed lines and
the line colour gets darker along each particle’s trajectory. The
predicted trajectories were generated by the fNRI (learned) model
using the edge-types inferred by the encoder on the prior 50 time-
steps (not shown) and the initial state only (i.e. predicted steps =
50). In each of these examples the edge-accuracy was 100%.

divergent forces are present, in our investigation we only
consider repulsive charge interactions where qi ∈ {0,+1}.
We combine these three interaction types in two different
ways to form two types of simulated system. In the I+C
system, ideal spring and charge interactions are randomly
added between particles, and in the I+C+F system, ideal
spring, charge and finite spring interactions are randomly
added between particles. The procedure for this random
interaction assignment is described below.

Particle trajectories (see figure 3) are generating by solving
Newton’s equations of motion using leapfrog integration
with a time-step of 1.0ms. To obtain our training, validation
and testing datasets, these trajectories are sub-sampled every
100 time-steps. For each simulated system we generate 50k
training examples, 10k validation examples and 10k test
examples, where each example contains 100 time-samples
with a step size of 0.1 s.

The only major change we make in generating our simula-
tions relative to those generated by Kipf et al. (2018a) is as
follows. For each example, rather than randomly connecting
each pair of particles by a spring with probability 0.5, the
number of springs ns ∈ {0, 1, ..., 12N(N − 1)} is drawn
from a uniform distribution. Particles are then randomly
connected using this number of springs. This means the

Factorised Neural Relational Inference

probability a pair of particles is connected by a spring is
still 0.5, while providing a significantly greater variety of
interaction graphs. This is desirable as it means a decoder
which learns some kind of ‘average interaction’ will perform
poorly. Furthermore, when particles are instead randomly
connected with probability 0.5, the total number of springs
follows a binomial distribution. It is possible the model
could learn to use this fact to preferentially assign a number
of springs close to the centre of this distribution. This could
artificially inflate the obtained edge accuracies and mean
that a trained model is less successful when it is used to
predict the dynamics of less familiar interaction graphs.

We apply a similar technique when assigning charges.
Rather than assigning a charge to each particle with proba-
bility 0.5; the number of charges nc ∈ {1, ..., N} is drawn
from a uniform distribution, then this number of particles
are randomly assigned positive charges.

In both of the I+C and I+C+F systems, constants kI , kF , l
and C are the same for all interactions and are kept constant
between systems (with kI = kF = 0.1 Nm−1, C = 0.2
Nm2 and l = 1m). The particles of mass 1 Kg, interact in a
square 2D box (side-length 5 m, centred on the origin) where
their initial locations are sampled from an isotropic 2D
Gaussian distributionN (0, 0.5m) and the initial velocity of
each particle is a random vector with fixed length 0.5 ms−1.

7. Experimental Details
In all experiments the models were optimised using the
Adam algorithm (Kingma & Ba, 2014) with a learning rate
of 0.0005, decayed by a factor of 0.5 every 200 epochs.
All experiments were run for 500 training epochs using a
batch size 128 with shuffling. For learned and true graph
models, checkpointing used the reconstruction loss on the
validation set for 10 prediction steps. For supervised models,
checkpointing used the edge accuracy on the validation set.
In the NRI and fNRI models, the concrete distribution was
used with a softmax temperature τ = 0.5.

In the work by Kipf et al. (2018a) edge-types are inferred
by observing the trajectories for 50 time-steps of size 0.1 s.
These same 50 time-steps are then supplied to decoder for
reconstruction. We modify this training routine by supplying
the trajectories of the first 50 time-steps to the encoder and
the next 50 time-steps to the decoder. In order to do this, the
simulations we generate are twice as long as the training and
validation trajectories used by Kipf et al. This modification
is used when training all the models in this work.

For all artificial neural networks we use the same archi-
tecture and hyperparameters as Kipf et al. (2018a); using
hidden and output dimensions of 256, batch-normalization
and ELU activations. During training of the decoder, we
use an M value of 10, meaning every 10th time-step the

decoder receives a ground truth state. We note that in order
to prevent exploding gradients in the encoder of the sfNRI
model when training on the I+C system, a tiny amount of
L2 regularisation was added to the loss function (5e-8 for
learned, 2e-5 for supervised).

Table 3 compares the size of the different models in terms
of number of parameters and summarises the number of
edge-types used in each model in our experiments. These
K and Ka values were chosen as for each model they allow
for a complete description of the interactions present in each
system without redundancy.

Table 3. Summary of the number of edge-types used by each
model (i.e. the dimension K of edge-type vectors zij) as well as
the total number of parameters in the encoder and decoder of each
model.

I+C I+C+F
K Encoder Decoder K Encoder Decoder

NRI 4 710,660 406,020 8 711,688 678,404
fNRI 2+2 710,660 406,020 2+2+2 711,174 542,212
sfNRI 2 710,146 269,828 3 710,403 337,924

In our edge and trajectory prediction experiments, the fol-
lowing baselines are used:

• Supervised: The encoder is trained in isolation and
the ground-truth interaction graphs are provided as
labels. For the NRI and fNRI models we train using
the cross-entropy error, and for the sfNRI model we
use the binary cross-entropy error. All models are
trained using a dropout of p = 0.5 on the hidden layer
representation of every MLP to avoid overfitting, and
the edge accuracy on the validation set is used for
checkpointing.

• True Graph: The decoder is trained in isolation and
the ground-truth interaction graphs are provided as
inputs and we train using the reconstruction error
(M = 10).

• Static: The decoder copies the previous state vector
xt+1 = xt for M prediction steps.

8. Edge Accuracy
In order to calculate the edge accuracies, we have to work
out the permutation of the edge-type labels the network uses.
For the NRI model this is straightforward as the edge-types
vectors are already one-hot. For each batch, we compute
the edge accuracy for each label permutation. We expect
the index permutation which gives us highest edge accuracy
to correspond to the permutation the network uses. We

Factorised Neural Relational Inference

can confirm this to be true by looking at the frequency
distribution of which label permutations give us this max
accuracy over the whole dataset. If the network has settled
on a label permutation, we observe all batches to give the
max accuracy for the same label permutation. In the fNRI
and sfNRI models where the edge-type vectors are no longer
one-hot, this process is more slightly complicated as we also
have to account for layer-graph label permutations.

In the results tables, edge accuracies are decomposed into
the accuracy for each interaction type. The combined accu-
racy is calculated such that it only receives a contribution
when the predicted edges between a pair of nodes are correct
for all interaction types. This gives the combined accuracy
a consistent meaning between the models.

