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Abstract
A variety of real-world applications require the
modeling and the simulation of dynamical sys-
tems, e.g., physics, transportation and climate.
With the increase of complexity, it becomes chal-
lenging to infer the true interactions solely based
on observational data. In this work, we propose
the Structure-informed Graph-Autoencoder for
Relational inference and simulation (SUGAR)
which incorporates various structural prior knowl-
edge. SUGAR takes the form of a variational
auto-encoder whose latent variables represent the
underlying interactions among objects. It repre-
sents various structural prior knowledge as dif-
ferentiable constraints on the interaction graph,
and optimizes them using gradient-based meth-
ods. Experimental results on both synthetic and
real-world datasets show our approach clearly out-
performs other state-of-the-art methods in terms
of both interaction recovery and simulation.

1. Introduction
Modeling and simulation of dynamical systems have various
applications in domains including physics, transportation,
climate, and social networks. These dynamical systems
can be represented as groups of interacting objects. It is
challenging to model dynamics in these systems, as usually
we only have access to the movements of individual ob-
ject, rather than the underlying interactions. Recently, many
work have been done on learning the dynamic model of inter-
acting systems using implicit interaction model (Sukhbaatar
et al., 2016; Guttenberg et al., 2016; Scarselli et al., 2009;
van Steenkiste et al., 2018), where interactions are mod-
eled implicitly by message passing or through the attention
mechanism. In Kipf et al. (2018), the authors propose the
Neural Relational Inference model (NRI), an approach that
infers explicit interactions while simultaneously learns the
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Figure 1. (a) Movement of a chain of connected objects under the
gravity field. (b) (c) Incorporating structural prior knowledge helps
find the ground truth interactions, and (d) improves simulation
performance.

dynamics purely from observational data. However, with the
increase of complexity, it becomes challenging to recover
the true interactions solely based on observed data, and thus
it is desirable to incorporate the prior knowledge about the
structure of the interactions when available. Figure 1 shows
a motivating example, where we observe the movements of
a set of objects that are connected with springs in a chain
structure. Due to the global gravity and the deeply entangled
movements, NRI tends to infer redundant interactions and
consequently results in degenerated simulation. To incorpo-
rate structural prior knowledge, we propose the Structure-
informed Graph-Autoencoder for Relational inference and
simulation (SUGAR). SUGAR takes the form of variational
auto-encoder, where the latent variables represent the under-
lying interactions among objects. Both the encoder and the
decoder employ a graph network-based architecture, with
node, edge, and global features. The model can incorporate
various structural priors, e.g., the node degree distribution,
the interaction sparsity, and the interaction type distribution.
Suppose we know the underlying interaction in Figure 1 has
a chain structure, then we can recover the true interactions
(Figure 1(c)) and achieve improved simulation (Figure 1(d)).

In particular, we provide the following key contributions: (1)
We propose novel approaches to integrate various structural
priors for better interaction recovery and simulation. (2)



Structure-informed Graph Auto-encoder for Relational Inference and Simulation

We design novel encoder and decoder that explicitly model
the global features to capture global interactions and to
facilitate communications between not directly connected
nodes. (3) We conduct a wide range of experiments on
both synthetic and real-world datasets. The results show
that SUGAR clearly outperforms state-of-the-art methods
in terms of both simulation and interaction recovery.

2. Related Work
Our work draws on several lines of previous research. In
Battaglia et al. (2016); Guttenberg et al. (2016); Chang
et al. (2017); Sanchez-Gonzalez et al. (2018); Scarselli et al.
(2009), the author studied the problem of learning the dy-
namics of a physical system from simulated trajectories
and from generated video data (Watters et al., 2017; van
Steenkiste et al., 2018) with a graph neural network. In Li
et al. (2018), the authors infer a residual graph based on
the given structure. A number of recent works based on
graph network (Monti et al., 2017; Velickovic et al., 2018;
van Steenkiste et al., 2018; Lee et al., 2018b;a) have the
ability to focus on a specific neighbor when aggregating in-
formation with the attention mechanism. These works either
assume a known graph structure or infer interactions implic-
itly. More related work in the fields of graph generation and
link prediction are discussed in the Appendix B.

We aim to infer interactions in an unsupervised manner
while simultaneously learns the dynamics from observa-
tional data. The most related work is Kipf et al. (2018),
where the authors propose to learn the explicit interactions
among objects using variational graph auto-encoder. The
main differences are that (1) we propose effective and con-
crete ways to encode various structured prior knowledge
into the model and (2) we design an improved encoder and
decoder architecture that explicitly models the global fea-
tures. This helps capture global interactions and to facilitate
communications between not directly connected nodes.

3. Methodology
Problem definition Given a sequence of observations
x = (x(1), · · · , x(T )) ∈ RT×|V |×P , which consists of the
observations from |V | objects over T time steps, we want
to simultaneously learn the interactions among objects and
predict the future states of these objects. We use customized
graph network (Battaglia, 2018) to model the movement
of these objects. The graph consists of three components,
G = (u, V,E). u is the global variable, V = {vi}i=1:|V | is
the set of nodes, and E = {(ek, rk, sk)}k=1:|E| is the set
of edges, where ek is the attribute of the kth edge, sk, rk
are the indices of the sender and receiver nodes respectively.
We use latent variable z to represent the relations among ob-
jects, where zk represent the distribution of the interaction
type of ek. A summary of main notations used in the paper

is provided in the Appendix (Table A1).

We formalize SUGAR based on the variational autoen-
coder (Kingma & Welling, 2013; Kipf & Welling, 2016;
Kipf et al., 2018). The model consists of three components,
the encoder, the decoder, and the component to incorporate
structural prior knowledge. Both the encoder and the de-
coder are based on customized graph networks. Figure 2
shows the architecture of SUGAR. The encoder takes as
input a sequence of observations, x, and estimates the in-
teractions z, while the decoder takes as input the estimated
interaction graph and learns the system dynamics to predict
the future state. The interaction constraint component cal-
culates the regularizations based on various structural prior
knowledge.

3.1. Encoder

In SUGAR, the encoder is used to infer pairwise interactions
among objects based on observations x. It employs a graph
network with a fully-connected graph structure, with two
round updates as follows:
Initialization: vi = φemb(x

(1)
i , x

(2)
i , · · · , x(T )

i ), ek = 0

Then each round consists of the following three steps: (1)
edge update, which updates the edge based its two connected
nodes and the global variable;

el+1
k = φle

(
elk, v

l
rk
, vlsk , u

l
)

(2) node update, which aggregates all the information from
incoming edges;

vl+1
i = φlv

(
vli,
∑
rk=i

elk, u
l

)
(3) global update, which updates the global features with
aggregated node and edge features.

ul+1 = φlu

(∑
k

el+1
k ,

∑
i

vl+1
i , ul

)
where φl·() denote the updating functions of the encoder in
the layer l, which is usually a multi-layer perceptron.

Interaction generation Based on the updated edge at-
tributes, we infer the corresponding distribution of inter-
actions, and sample to get the interaction graph. We use
the Gumbel softmax (Maddison et al., 2017) to approxi-
mate the discrete distribution of interactions and use the
reparametrization trick to get the gradient from it.

3.2. Decoder

The decoder takes as input the observation x(t) and the
inferred interactions, and outputs ∆x(t) with two rounds of
updates, with following processing steps.

el+1
k =

∑
m

zk,mφ̃
l
e

(
elk, v

l
rk
, vlsk , u

l
)
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Figure 2. Model architecture of SUGAR. The encoder takes as input a sequence of observation, x, and estimates the interactions z, while
the decoder takes as input the estimated interaction graph and learns the system dynamics to predict the future state. The interaction
constraint component calculates the loss function based on specified structural prior knowledge.

where zk,m denotes the probability of ek being the m-th
type. Note that each type of interaction has its dedicated
update function to enforce the effect of edge type. Then the
decoder updates the node and the global information

vl+1
i = φ̃lv

(
vli,
∑
rk=i

elk, u
l

)

ul+1 = φ̃lu

(∑
k

el+1
k ,

∑
i

vl+1
i , ul

)
.

Finally, the decoder predicts the observation in the next time
stamp. Here φ̃l·(·) denote the updating functions for the
decoder in layer l.

∆x
(t)
i = φ̃x(vl+1

i )

q(x
(t+1)
i |x(t), z) = N

(
x
(t)
i + ∆x

(t)
i , σ2I

)
3.3. Incorporating Structural Prior Knowledge

For a dynamical system, we usually have prior knowledge
about properties of its interactions, which can help recover
the true interactions. In this work, we are particularly inter-
ested in edge/interaction-level and node/object-level struc-
tural knowledge. Examples of interaction-level structural
knowledge can be the distribution of interactions types, the
sparsity of interactions, while examples of object-level struc-
tural knowledge are the distribution of node degrees, the
maximize/minimum interactions of a node. In this section,
we show two examples of encoding the structural knowl-
edge into differentiable graph constraints, more details are
available in Appendix A. For the simplicity of illustration,
we assume there are only two types of interactions, and the
first type means no-edge. Thus, zk denotes the probability
of there exists an interaction between vsk and vrk , and ẑk
means an instance sampled from that distribution.

3.3.1. INTERACTION-LEVEL STRUCTURAL KNOWLEDGE

With the probabilistic distribution of interactions, we can
incorporate various interaction-level structural knowledge.

Interaction Sparsity One important example is the spar-
sity prior, which aims to minimize the number of interac-
tions measured using the L0 distance. L0 distance is not
differentiable in general, however, with the probabilistic
distribution of interactions, we can minimize the expected
number of interactions by penalizing the probability of has
interactions between nodes.

L0(z) =
∑
k

Ee′∼z[I(e′k,0 6= 1] =
∑
k

zk,0

This idea can be further generalized to “prior graph align-
ment”, which aims to minimize the number of interactions
that are different from a specified graph.

3.3.2. OBJECT-LEVEL STRUCTURAL KNOWLEDGE

We can encode object-level structural knowledge by first
summarizing object-level distributions of interactions from
z, and then minimizing the differentiable distance metric,
e.g., K-L divergence, between it and the prior distribution.

Node degree distribution One important example of
object-level structural knowledge is the distribution of the
node degrees. Larger node degree means more densely re-
lated objects. Suppose, the node out-degree dO(vi) ∼ pd(·)

dO(vi) = Eẑ∼z(
∑
sk′=i

ẑk′) =
∑
sk′=i

zk′ ,

then we want the node degree distribution of the generated
graph, i.e., qd(·), to be close to pd(·).
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Table 1. Simulation performance w.r.t. MSE
Dataset Mass (×10−2) Skeleton (×10−4)

Prediction steps 1 10 20 1 10 20

Static 155 653 770 1.80 62.2 215
VAR 24.1 77.3 140 173 211 240

LSTM (Single) 85.1 162 198 3.64 38.7 109
LSTM (Joint) 9.04 25.5 74.1 2.82 28.2 75.0
GN (full graph) 68.7 186 238 4.35 47.4 135

NRI 11.1 40.2 104 3.81 39.3 109

SUGAR 2.01 7.09 31.6 1.72 15.0 40.3

Ld(z) = DKL[qd(·)||pd(·)] = Ed(v)∼qd(log qd − log pd)

= − 1

|V |
∑
i

log pd(
∑
sk′=i

zk′) + const

In the case that pd(·) is discrete, we can use continuous ap-
proximation, e.g., Gumbel softmax (Maddison et al., 2017)
for the multinomial distribution.

4. Experiment
Experimental Settings We conduct experiments on both
the physical simulation dataset, Mass (Sanchez-Gonzalez
et al., 2018), and the real-world dataset, Skeleton (Kipf
et al., 2018). Mass contains the observations of a chain of
objects connected by strings moving in the gravity field gen-
erated by the simulation system in Sanchez-Gonzalez et al.
(2018). Skeleton is the CMU Motion Capture Database used
in Kipf et al. (2018). We compare the proposed method
with the following approaches, including: (1) Static: which
assumes a constant state, x(t+1) = x(t); (2) VAR: Vec-
tor Auto-Regression model (Hamilton, 1994); (3) LSTM
(single): A LSTM model whose weights are shared across
different objects; (4) LSTM (joint): A LSTM model that
jointly models the motion of all objects; (5) Graph Network
(GN) (Sanchez-Gonzalez et al., 2018), where full graph is
used; (6) Neural relational inference model (NRI) (Kipf
et al., 2018): the KL divergence based sparse prior is used;
(7) SUGAR-NP: the variant of SUGAR without using the
structural prior knowledge. Detailed information of datasets
and baselines are provided in Appendix C.

Simulation Performance Table 1 shows the performance
comparison of different approaches on the two datasets
based on Mean Squared Error (MSE)1, and the best values
are highlighted. We observe that: (1) SUGAR consistently
achieves the best performance on both datasets for all predic-
tion steps, which suggests the effectiveness of the proposed
algorithm. The superiority of SUGAR becomes more signif-
icant with the increase of the number of prediction steps; (2)
The performance of GN with the full graph is significantly
worse than both NRI and SUGAR, which suggests the im-

1Evaluation w.r.t. other metrics are provided in Appendix C.3.
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Figure 3. Simulation performance vs. prediction steps

Table 2. Interaction recovery performance
Metric Accuracy Precision Recall F1-Score

Corr 63.2% 30.2% 67.9% 41.8%
Corr (LSTM) 57.7% 28.2% 76.2% 41.2%

NRI 92.7% 72.9% 99.3% 84.1%

SUGAR-NP 97.2% 88.0% 99.4% 93.4%
SUGAR 99.2% 96.6% 99.4% 98.0%

portance of inferring the interactions. Besides, in Figure 3,
SUGAR performs better than SUGAR-NP which justify the
importance of incorporating prior knowledge.

Interaction Recovery Table 2 shows the performance of
interaction recovery of different methods, which we com-
pare with the baselines Corr, Corr(LSTM)2. We observe
that: (1) SUGAR and SUGAR-NP perform clearly better
than NRI and other baselines. Besides, SUGAR achieves
even better performance than SUGAR-NP which justifies
the importance of incorporating prior knowledge; (2) NRI
usually has a high recall but relatively low precision even
with the sparsity prior. There is because NRI tends to have
redundant connections.

To better understand the model, we visualize the interac-
tions learned by NRI and SUGAR (Figure A3), as well as
example predictions generated by different methods (Fig-
ure A4). We observe SUGAR manages to identify the true
interactions, and generates better simulations than all other
baseline approaches. More prediction results and ablation
studies about the effects of several types of structural infor-
mation are provided in Appendix C.4.

5. Conclusion
In this work, we introduced SUGAR, a variational graph
auto-encoder based model which effectively utilizes struc-
tural prior knowledge to better infer interactions and learn
the system dynamics. In a range of experiments on both
synthetic and real-world datasets, we found that with struc-
tural prior information, SUGAR achieved clearly improved
performance on both interaction recovery and simulation.

2Implementation details are provided in Appendix C.2.
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Appendix

Table A1. Notation
Name Description

G A graph (u, V,E)
u Global variable of the graph
V Nodes of the graph
E Edges of the graph
vi The i-th node
ek, eij The k-th edge, the edge from vi to vj
zk, zij The latent random variable representing

the distribution of edge ek, eij
φlv, φ

l
e, φ

l
u The update functions of node, edge

and global variable of encoder in layer l
φ̃lv, φ̃

l
e, φ̃

l
u The update functions of node, edge

and global variable of decoder in layer l
x(t) Observation in time t
x
(t)
i Observation of node vi in time t
L· Various loss functions

Table A1 summarizes the main notations used in the paper.

A. Detailed Technique
We incorporate prior knowledge by extending the regular-
ization term in ELBO, i.e., D[q(z|x)||p(z)], specifically:

• Customize the target probabilistic distribution p(z),
and minimize the KL divergence following the frame-
work of VAE, e.g, node degree distribution and edge
type distribution.

• For priors that can’t easily be represented as proba-
bility distribution, e.g., graph alignment, L0 sparsity,
symmetric, we define customized distance metrics D.

Prior graph alignment Given a prior graph, where e∗k
represents the one-hot edge type of k-th edge of the prior
graph, we want to optimize the prediction performance using
a graph that has the minimum expected number of different
edges from the prior graph.

LG(z) =
∑
k

∑
m

Ee′∼z[I(e′k,m 6= e∗k,m)]

=
∑
k

∑
m

zk,m e∗k,m

Interaction type distribution Similar to the node degree
distribution, we can enforce the interaction type distribution
by first calculating the interaction type distribution from z,
and then minimize the K-L divergence (or another differen-
tiable distance metric of distributions).

Symmetricity We can enforce the symmetricity by simply
setting zij = zji, i.e., only uses half of the latent variables.

Many priors can be specified to a particular object, e.g., L0
sparsity, as they can be written as the sum of constraints of
individual object/interaction. Besides, we can also specify
the node/edge dependent prior distributions to accomplish
this.

B. Additional Related Work
Our work also relates to literature in graph generation (You
et al., 2018; Bojchevski et al., 2018; Simonovsky & Ko-
modakis, 2018; Liu et al., 2018; Kipf & Welling, 2016;
Wang et al., 2017). However, instead of generating a graph
from scratch, this work focuses on inferring the interac-
tions/edges among a set of given nodes.

Our work is different from literature in link prediction (Lü
& Zhou, 2011; Zhang & Chen, 2018), as most of the link
prediction method are either supervised or semi-supervised,
while our task requires fully unsupervised link prediction or
interaction recovery.

Some cocurrent work also investigate the problem of in-
ferring the graph structure. Grover et al. (2019) learns the
graph structure using an iterative graph refinement strategy
with the low-rank approximations. Franceschi et al. (2019)
propose to learn the graph structure by refining the initial
KNN graph. However, none of these approaches provide a
general way to incorporate prior knowledge.

C. Detailed Experimental Results
C.1. Dataset

(a) Mass (b) Skeleton

Figure A1. Examples of trajectories in the experimental datasets.

Mass: which contains the observations of a chain of ob-
jects connected by strings moving in the gravity field. This
is generated by a physical simulation system in (Sanchez-
Gonzalez et al., 2018). The number of objects ranges from
5 to 8. There are 50K samples for training, 10K samples for
validation and 10K samples for testing.
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Skeleton: The CMU Motion Capture Database3 has a large
number of trajectories of different human activities, includ-
ing walking, jogging, and dancing. Each sample in the
dataset is the 3D trajectories of 31 nodes, each of which
tracks a joint. Here we follow the data selection process
in (Kipf et al., 2018): we choose 23 non-overlapping walk-
ing trials from the database and split them into training (11
trials), validation (5 trials) and test (7 trials). We use the
original form of motion data (which only contains positions
of each joint) in all experiments.

C.2. Baselines

We compare the proposed method with the following ap-
proaches, including:

• Static: which assumes a constant state, x(t+1) = x(t);

• VAR: Vector Auto-Regression model (Hamilton,
1994);

• LSTM (single): A LSTM based recurrent neural net-
work. The weights are shared across different objects;

• LSTM (joint): A LSTM based recurrent neural network
which takes as input the trajectories of the concatena-
tion of all the objects in the feature dimension, and
make the prediction as a whole;

• Graph Network (GN) (Sanchez-Gonzalez et al., 2018):
a learnable forward and inference model with relational
inductive bias. Full graph is used as the input;

• Neural relational inference model (NRI) (Kipf et al.,
2018): a variational auto-encoder based inference
model with graph network, the hidden dimension is
256. For the predictions on the Mass and Skeleton
datasets, the KL divergence based sparse prior is used;

• Corr: We calculate a correlation matrix R of all nodes,
where Ri,j is the Pearson correlation coefficient be-
tween flattened trajectories of the i th node and the j th
node. With a threshold θ1, (i, j) determined based on
F1.

• Corr(LSTM): Similar with Corr, except that we use the
output of the last LSTM layer at the last time step of
each node to calculate the correlation matrix.

• SUGAR-NP: the variant of SUGAR without using
the graph constraints derived from the structural prior
knowledge.

All neural network based approaches are implemented us-
ing PyTorch (Paszke et al., 2017), and are trained using the

3http://mocap.cs.cmu.edu/

Adam optimizer (Kingma & Ba, 2015) with learning rate
annealing. The best hyperparameters are chosen based on
the performance on the validation dataset. Both encoder
and decoder contain two graph network blocks, with hid-
den dimension 64, such that it has a similar number of
parameters with NRI. The initial learning rate is 5e− 4 and
exponentially reduces with a ratio of 0.2 every 50 epochs.
Early stopping on the validation dataset is used. We use the
multi-step prediction trick (Kipf et al., 2018), i.e., feeding
the ground truth every 10 timesteps to avoid the degener-
ated decoder. The sparsity constraint and the node degree
distribution constraint are used in the Mass and Skeleton
dataset.

Note that, SUGAR and NRI share the same inputs on both
Mass and Skeleton, i.e., SUGAR does not has additional
input, e.g., the gravity. Instead, the global variable is a
zero vector in the input layer, and the global variables is
designed to facilitate communications between not directly
connected nodes (in the decoder), and to additional capture
global interactions.

We also conduct experiments on the Spring dataset Kipf
et al. (2018). Both NRI and SUGAR achieve near perfect
results, i.e., visually no difference from the ground truth and
interaction recovery accuracy greater than 99%.

C.3. More Simulation Performance

Table A2,A3 and A4 show the simulation performance of
different baselines w.r.t. MAE, MAPE and SMAPE respec-
tively. SUGAR consistently achieves the best performance
for different prediction steps on both datasets.

Table A2. Simulation performance w.r.t. MAE

Dataset Mass (×10−2) Skeleton (×10−2)

Prediction steps 1 10 20 1 10 20

Static 159 332 375 1.75 8.98 16.5
VAR 57.6 111 147 16.0 17.4 18.5

LSTM (Single) 115 160 176 2.32 6.94 11.5
LSTM (Joint) 35.2 57.2 96.0 2.06 6.05 9.80
GN (full graph) 94.5 169 195 2.54 7.60 12.7

NRI 33.4 71.6 117 2.42 7.15 11.8

SUGAR 6.86 16.8 43.3 1.56 4.22 6.72

C.4. Ablation Study

To investigate the effect of incorporating prior knowledge
about the structure, we conduct experiments on the Mass
dataset.
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Table A3. Simulation performance w.r.t. MAPE
Dataset Mass (%) Skeleton (%)

Prediction steps 1 10 20 1 10 20

Static 47.37 96.23 119.64 0.82 4.18 7.77
VAR 15.74 32.28 46.61 7.14 7.71 8.24

LSTM (Single) 32.87 45.76 54.11 1.05 3.12 5.26
LSTM (Joint) 10.63 17.46 32.35 0.92 2.68 4.37
GN (full graph) 28.24 51.14 64.12 1.16 3.42 5.79

NRI 10.28 21.25 38.38 1.11 3.26 5.39

SUGAR 2.00 4.80 14.41 0.74 2.01 3.24

Table A4. Simulation performance w.r.t. SMAPE
Dataset Mass (%) Skeleton (%)

Prediction steps 1 10 20 1 10 20

Static 46.23 90.81 105.01 0.82 4.18 7.74
VAR 16.02 34.40 53.84 7.15 7.74 8.26

LSTM (Single) 34.16 50.69 64.17 1.05 3.12 5.24
LSTM (Joint) 10.62 17.49 33.98 0.92 2.68 4.37
GN (full graph) 27.99 50.57 66.48 1.16 3.42 5.77

NRI 10.19 21.42 40.47 1.11 3.25 5.38

SUGAR 1.96 4.61 13.66 0.74 2.01 3.22

C.4.1. EFFECT OF SPARSITY CONSTRAINT

Figure A2 shows the effect of applying L0 sparsity prior,
where SUGAR-SP50 means the regularization coefficient
is 50. We observe that with the increase of the regulariza-
tion coefficient, the precision generally increases, while the
recall first stays stable and then decreases.

C.4.2. EFFECT OF NODE DEGREE CONSTRAINT

Table A5 shows the effect of the node degree constraint. We
denote as SUGAR-NDC the SUGAR model incorporating
the node degree constraint. The constraint is applied when
the performance becomes stable on the validation dataset.
We find that applying the node degree constraint greatly in-
crease the precision, while the recall become slightly worse,
resulting a significantly improved F1 score.

C.5. Example Simulation and Inferred Interactions

To better understand the model, we visualize the interactions
learned by NRI and SUGAR (Figure A3), as well as example
predictions generated by different methods (Figure A4). We
observe SUGAR manages to identify the true interactions,
while NRI has a couple of redundant interactions even with
its sparsity prior.
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SUGAR-NP
SUGAR-SP50
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5 6 7 8
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0.90

0.95
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Figure A2. Effect of the sparsity constraint

Table A5. Effect of the node degree constraint on the Mass dataset.
Metric Accuracy Precision Recall F1-Score

NRI 92.7% 72.9% 99.3% 84.1%
SUGAR-NP 97.2% 88.0% 99.4% 93.4%

SUGAR-NDC 99.2% 97.2% 98.8% 98.0%

(a) True interactions (b) SUGAR (c) NRI

Figure A3. Interactions learned on the Mass dataset. NRI usually
infers redundant interactions, while SUGAR recovers the ground
truth interactions.
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Figure A4. Observation (first row), simulation (black) and ground truth (red) on the Mass dataset


