
COMBO: Combinatorial Bayesian Optimization using Graph Representations

Changyong Oh 1 Jakub M. Tomczak 2 Efstratios Gavves 1 Max Welling 1 2

Abstract
This paper focuses on Bayesian Optimization –
typically considered with continuous inputs– for
discrete search input spaces, including integer,
categorical or graph structured input variables. In
Gaussian process-based Bayesian Optimization
a problem arises, as it is not straightforward to
define a proper kernel on discrete input structures,
where no natural notion of smoothness or similar-
ity could be provided. We propose COMBO, a
method that represents values of discrete variables
as vertices of a graph and then use the diffusion
kernel on that graph. As the graph size explodes
with the number of categorical variables and cat-
egories, we propose the graph Cartesian product
to decompose the graph into smaller sub-graphs,
enabling kernel computation in linear time with re-
spect to the number of input variables. Moreover,
in our formulation we learn a scale parameter per
subgraph. In empirical studies on four discrete
optimization problems we demonstrate that our
method is on par or outperforms the state-of-the-
art in discrete Bayesian optimization.

1. Introduction
While most of the literature is interested in optimization of
mathematically well-defined functions in continuous input
spaces, a plethora of problems is concerned with finding
optima of black-box functions, often involving discrete (cat-
egorical or ordinal) variables (Jones et al., 1998). Examples
of such black-box functions include optimizing hyperparam-
eters for machine learning algorithms (Snoek et al., 2012),
finding optimal pipelines for engineering systems (Lam
et al., 2018) or optimizing the architecture of a deep neural
network (Liu et al., 2018). What distinguishes black-box
functions from conventional function optimization is the
following: (i) black-box functions cannot be defined by a

1QUVA Lab, Institute of Informatics, University of Amsterdam,
Amsterdam, the Netherlands 2Qualcomm AI Research, Qualcomm
Technologies Netherlands B.V. Correspondence to: ChangYong
Oh <C.Oh@uva.nl>.

Presented at the ICML 2019 Workshop on Learning and Reasoning
with Graph-Structured Data Copyright 2019 by the author(s).

closed-form mathematical expression, such that computing
gradients with respect to a loss is not possible, (ii) they are
expensive to evaluate, and (iii) their evaluations are noisy.
Because of these properties, applying the popular gradient-
based or reinforcement learning optimization methods is
challenging (Wilson et al., 2014). Especially for black
box functions with expensive evaluation cost, Bayesian
Optimization (BO) is rapidly gaining popularity (Shahri-
ari et al., 2016). Interestingly, Bayesian Optimization has
mostly been visited in the context of continuous input spaces
(Močkus, 1975). Many black box problems, however, live
in discrete, combinatorial input spaces, such as scheduling
problems, maximum flow problems, shortest path or other
graph-related problems (Syslo et al., 2006).

Using classical BO for searching discrete spaces is unsuit-
able (Garrido-Merchán & Hernández-Lobato, 2018). The
most accurate Bayesian Optimization algorithms employ
Gaussian process (GP) models for surrogate models (Os-
borne et al., 2009). The problem with this modelling choice,
however, is that it is not straightforward how to define a
semi-positive definite kernel for the Gaussian process on dis-
crete inputs. For one, rounding values causes a discrepancy
between what the acquisition function of the BO recom-
mends as a next evaluation point, and the actual point eval-
uated in the end (Garrido-Merchán & Hernández-Lobato,
2018). More importantly rounding leads to flat values for
the objective function in between the discretized inputs. As
these flat values are obtained after computing the GP, the flat-
ness is ignored when computing the covariances at the next
iteration (Garrido-Merchán & Hernández-Lobato, 2018).
One can also define a convex relaxation of second-order
pair relationships on the graph (Baptista & Poloczek, 2018).
In that case, however, important higher order interactions are
ignored, potentially underestimating the nonlinear complex
dependency between variables including covariances.

To this end, in this work we propose a novel algorithm,
which we coin COMBO for combinatorial Bayesian Opti-
mization using graph representations. COMBO is specif-
ically designed for efficient and large-scale Bayesian Op-
timization in discrete and combinatorial input spaces. In-
spired by spectral graph theory (Chung, 1996), we propose
to use diffusion kernels (Kondor & Lafferty, 2002; Smola
& Kondor, 2003) for defining the surrogate model in our
GP. As the size of the problem in discrete spaces increases

COMBO: Combinatorial Bayesian Optimization using Graph Representations

exponentially with respect to the number of categorical
variables, and the average number of categories per categor-
ical variable, computing the diffusion kernel soon becomes
intractable. To this end, we show that if a graph can be
expressed as the graph Cartesian product of smaller sub-
graphs, it admits a solution in linear time, thus, allowing
to scale up to larger and more practical problems. Interest-
ingly, we show that one can easily adapt the diffusion kernel
to account for individual tuning parameters per categorical
variable when computing the covariances between discrete
variables, which yields more flexible kernels.

2. Method
2.1. Bayesian Optimization

Bayesian optimization aims at finding the global optimum
of a black-box function f over a search space X , namely

xopt = arg min
x∈X

f(x). (1)

The general pipeline of Bayesian optimization is as follows.
At each round, in the absence of any other information re-
garding the nature of f(x), a surrogate model attempts to ap-
proximate the behavior of f(x) based on the so far observed
points D = {(xi, yi)}, where yi = f(xi). The surrogate
function is then followed by an acquisition function that
suggests the next most interesting point xi+1 that should be
evaluated. The pair (xi, yi) is added to the training dataset,
D = D∪(xi, yi), the Gaussian process is retrained and the
process repeats until the optimization budget is depleted.

2.2. Bayesian Optimization on Discrete Structures

Search space as a graph To this end, we draw inspiration
from spectral graph theory (Smola & Kondor, 2003). We
represent the search space as a graph G = (V, E), where
each vertex in V is a different configuration of the input,
and an edge in E determines whether two such configura-
tions are considered to be similar or no. For instance, for m
categorical variables with each d possible values there exist
dm nodes. The objective function is then a function defined
on this graph, i.e., the graph signal f : V → R. Having
defined a graph signal as a function, we can use Fourier
analysis on graphs (Ortega et al., 2018) to obtain an approx-
imation to the graph signal f . For this purpose, we need
the graph Laplacian, L(G) = DG −AG where AG is the
adjacency matrix and DG is the degree matrix. We recover
the frequencies and the Fourier bases of our decomposi-
tion as the eigenvalues, {λi}i=1,...,n, and the eigenvectors,
{ui}i=1,...,n, of the laplacian L(G), respectively. Then, the
graph signal f on G is equivalent to the linear combination
of the Fourier basis-vectors, namely

f([p]) =

n∑
i=1

wiui([p]), (2)

where wi is a coefficient, ui([p]) is the p-the entry of the
vector ui and n is the number of non-zero eigenvalues. An
approximation of f([p]) could be obtained by capping eigen-
values and summing up over only a subset of them.

Kernels on graphs Following (Smola & Kondor, 2003),
we can construct a kernel on a graph by smoothly regular-
izing frequencies. The idea is to penalize frequencies λi
according to a regularization operator for graph signals. In
our method we rely on r(λ) = exp(β λ)) for a regular-
ization operator. We can then use a kernel derived from
the regularization operator to model a smooth function on
the graph using a Gaussian Process. The smoothness of
the kernel can be controlled by the regularization operator
and the weights on the edges of the graph. Formally, the
corresponding kernel is defined as follows (see Corollary 1
in (Smola & Kondor, 2003)):

k([p], [q]) =

n∑
i=1

1

r(λi)
ui([p])ui([q]), (3)

which regularizes high frequencies because the function
1/r(λi) obtains lower values for higher λi.

Interestingly, taking the diffusion process regularization
operator r(λi) = exp(β λi), where β > 0, we obtain
a discrete version of the exponential kernel, the diffusion
kernel (Kondor & Lafferty, 2002; Smola & Kondor, 2003):

K = exp
(
− β L(G)

)
, (4)

where K is the kernel matrix. Computing the kernel K
requires calculating the matrix exponentiation defined by
the limit exp(B) = limn→∞(I−B/n)n. As the kernel on
a graph in eq. 4 is rather computationally troublesome due
to the matrix exponentiation, we simplify the calculation by
using the form in (3). For this purpose we need to calculate
the eigendecomposition of the Laplacian matrix, L(G) =
UΛUT , where U is a matrix with eigenvectors in columns,
and Λ is a diagonal matrix with eigenvalues on the diagonal.
Then, the kernel matrix could be expressed as follows:

K = Ur−1(Λ)UT , (5)

where r−1(Λ) = diag
(

1
r(λi)

)
.

2.3. Cartesian Product Graph Kernels

In the current formulation, the Fourier basis and the frequen-
cies are given by an eigendecomposition of a | V | × | V |
matrix, with | V | being the number of nodes in the graph.
Unfortunately, this approach does not scale up to graphs
with a large number of vertices due to the cubic compu-
tational complexity of the eigendecomposition. However,
an arbitrary graph can be uniquely decomposed into the
Cartesian product of small graphs up to graph isomorphisms

COMBO: Combinatorial Bayesian Optimization using Graph Representations

(Hammack et al., 2011). To improve scalability, therefore,
we approximate a large graph G by the graph Cartesian
product of smaller graphs {Gi}i.

Importantly, the Laplacian of the G1�G2 can be expressed
algebraically using the Kronecker product ⊗ and the Kro-
necker sum ⊕ as follows: (Hammack et al., 2011):

L(G1�G2) = L(G1)⊕ L(G2)

= L(G1)⊗ I1 + I2 ⊗ L(G2), (6)

where I denotes the identity matrix.

In the case of the diffusion kernel form discrete (categorical
or ordinal) variables, we can take advantage of the properties
of the graph Cartesian product in eq. (6) and the matrix
exponentiation to obtain:

K =

m⊗
i=1

exp
(
− β L(Gi)

)
. (7)

Then, we can compute the kernel matrix by calculating
the Kronecker product of individual kernels. Using eq. (5)
we can compute the eigendecomposition of the individual
Laplacians to obtain the kernel for the i-th subgraph.

In general, the application of the graph Cartesian product en-
ables us to reduce kernel computations from O(

∏m
i=1 |Vi|)

to O(
∑m
i=1 |Vi|). The advantage is that for graphs that can

be decomposed we can obtain much higher computational
efficiency. A potential problem may arise, however, if the
assumed independence between subgraphs G1 and G2 is in-
valid. Taking the decomposition to the limit by recursion,
for example, would lead to each node in the graph being
independent, which is clearly undesirable. For the proposed
decomposition there is a trade-off between relying on many
small subgraphs, and, thus, increasing efficiency, or hav-
ing fewer subgraphs, and increasing model flexibility in
capturing higher-order interactions. Provided that we have
reasonable prior knowledge of the search domain, which
is typically the case for Bayesian optimization (Shahriari
et al., 2016), we can scale up to large graph search spaces
with reasonable flexibility.

Variable-wise edge scaling Further, we notice that we
can make the kernel more flexible by considering an indi-
vidual scaling factor for each variable instead of a global
scaling parameter. Then, the diffusion kernel becomes:

K = exp
(m⊕
i=1

−βi L(Gi)
)
, (8)

where βi > 0 for i = 1, . . . ,m. Since the diffusion kernel is
a discrete version of the exponential kernel, the application
of the individual βi for each variable is equivalent to the
automatic relevance determination (ARD) kernel (MacKay,

Algorithm 1 COMBO: Combinatorial Bayesian Optimiza-
tion with kernels on a graph

1: Input: n categorical variables
2: Set a search space: # See Sect. 2.2 and 2.3
B Specify the search space as a graph G = (V, E).
B Calculate Fourier basis-vectors and frequencies of
the given graph {(λi, ui)}.

3: Set D = ∅.
4: Initialize C that is a set of k randomly selected vertices.
5: repeat
6: Estimate βi using samples from p(βi|D) using slice

sampling.
7: Evaluate acquisition function on vertices in C, i.e., the

predictive mean and the predictive standard deviation
at a vertex [v] ∈ C: µ([v]), σ([v]), using the ARD
diffusion kernel in (8).

8: Pick the best performing vertex from C:
[v∗] = arg max[v] a

(
µ([v]), σ([v])

)
.

9: Evaluate the objective at [v∗], f([v∗]), and
D = D ∪ {[v∗], f([v∗])}.

10: Determine C of k candidates by running a greedy
search from [v∗].

11: until stopping criterion

1994; Neal, 1995). Hence, we can determine which vari-
ables (subgraphs) are more relevant than the others. We
refer to this kernel as the ARD diffusion kernel.

2.4. COMBO Algorithm

Having defined an appropriate kernel on large-scale graphs,
we can employ large-scale Gaussian processes. The Gaus-
sian process on the graph provides the predictive mean and
the predictive standard deviation for every graph vertex. We
use these two quantities to maximize the acquisition func-
tion a(·, ·) and determine the next vertex to be evaluated, as
in standard Bayesian Optimization.

In this paper, in order to optimize the acquisition function,
we rely on greedy optimization on a graph. In our framework
we can use any existing acquisition function like GP-UBC
or the Expected Improvement (EI) (Rasmussen & Williams,
2006). We opt for EI. Determining β’s is crucial for obtain-
ing a flexible kernel function. For each βi we use a uniform
prior over [0, 2]. Then, we sample from the posterior of β’s,
p(β|D), using slice sampling (Neal, 2003) within Gibbs
sampling. All these steps are presented in Algorithm in 1.
We refer to this algorithm as the Combinatorial Bayesian
Optimization (COMBO) with graph representation.

3. Experiments
We evaluate our approach with the following experiments.
As an illustration we conduct four experiments: (i) dis-

COMBO: Combinatorial Bayesian Optimization using Graph Representations

cretized Branin benchmark (Laguna & Martı́, 2005), (ii) a
contamination control of a food supply chain with 25 stages
(Baptista & Poloczek, 2018), (iii) a sparsification of Ising
models with 24 discrete variables (Baptista & Poloczek,
2018), and (iv) a pest control system with 25 categorical
variables, each variable taking 5 possible values. The de-
tailed description of these problems could be found in the
Supplementary Material. We compare COMBO with the
following approaches: Simulated Annealing (SA) (Spears,
1993), PS: sequential particle sampling for binary problems
(Schäfer, 2013), SMAC (Hutter et al., 2011): an approach
similar to EI with a local search for a candidate with high
expected improvement using a random forest model, Obliv-
ious Local Search (OLS) (Khanna et al., 1998): a local
search with the Hamming distance starting at a randomly
chosen point, Random Search (RS), Bayesian Optimiza-
tion of Combinatorial Structures (BOCS-SDP) (Baptista
& Poloczek, 2018): a combination of the sparse Bayesian
linear regression with second-order relationships and the
semi-definite programming (SDP) as an acquisition func-
tion, Expected improvement (EI) (Jones et al., 1998): a
Gaussian Process with categorical variables represented by
one-hot encoding.

3.1. Results and Discussion

Results for the proposed approach and other methods are
prestend in Tables 1, 2, 3, and 4. More detailed results are
provided in the Supplementary Material.

Table 1. Results on the discretized Branin benchmark. We present
an average with a standard error calculated over 25 runs.

METHOD

SA 0.71±0.17
SMAC 0.84±0.11
RS 0.96±0.08
TPE 1.06±0.14

COMBO 0.40±0.00

Table 2. Results on the contamination control benchmark. We
present an average with a standard error calculated over 25 runs.

METHOD λ = 0 λ = 0.0001 λ = 0.01

SA 21.49±0.04 21.52±0.04 21.68±0.03
PS 21.97±0.06 21.91±0.06 22.08±0.06
SMAC 21.67±0.04 21.76±0.05 21.87±0.05
RS 21.90±0.05 21.92±0.04 22.12±0.03
OLS 21.47±0.04 21.42±0.05 21.61±0.04
BOCS-SDP 21.28±0.03 21.31±0.03 21.44±0.03
EI 21.33±0.02 21.34±0.03 21.50±0.03

COMBO 21.26±0.03 21.28±0.03 21.43±0.03

We notice that on three out of four cases COMBO per-

Table 3. Results on the Ising sparsification benchmark. We present
an average with a standard error calculated over 25 runs.

METHOD λ = 0 λ = 0.0001 λ = 0.01

SA 0.12±0.05 0.06±0.03 0.29±0.05
PS 1.30±0.23 0.94±0.18 1.30±0.21
SMAC 0.33±0.07 0.40±0.07 0.51±0.06
RS 0.80±0.14 0.74±0.14 1.02±0.15
OLS 0.40±0.17 0.36±0.10 0.34±0.06
BOCS-SDP 0.01±0.02 0.02±0.04 0.21±0.05
EI 0.13±0.04 0.14±0.05 0.30±0.04

COMBO 0.12±0.04 0.11±0.03 0.31±0.05

Table 4. Results on the pest control benchmark. We present an
average with a standard error calculated over 25 runs.

METHOD

SA 13.04±0.13
SMAC 14.66±0.08
RS 15.79±0.07
TPE 15.05±0.05

COMBO 12.99±0.11

formed the best or on par with the SOTA methods. Impor-
tantly, our approach performed outstanding in the case of
multi-category discrete variable (Branin and Pest) showing
its great potential. Moreover, we notice that COMBO con-
verges fast and is always among three fastest converging
methods (see figures in the Supplementary Material).

4. Conclusion
In this work we propose COMBO, an algorithm tailored
for Bayesian Optimization for discrete and combinatorial
inputs input search spaces. To the best of our knowledge,
COMBO is the first Bayesian Optimization algorithm us-
ing Gaussian Processes as a surrogate model suitable for
high-dimensional combinatorial inputs. To efficiently tackle
the exponentially increasing complexity of discrete search
spaces, we rest upon the following ideas: (i) we represent
the search space as a graph with configurations in vertices
and edges corresponding to similarity among vertices, (ii)
we propose a flexible ARD diffusion kernel on graphs. (iii)
we rely on graph Cartesian products for graph decompo-
sition, allowing for calculating the kernel in a linear time
with respect to the number of vertices and last, (iv) we use
greedy local search for selecting next points for evaluation.
We evaluate the proposed algorithm on four discrete opti-
mization problems –binary and multi-category ones–. On
the binary problems COMBO performs on par or a bet-
ter than the state-of-the-art, whereas on the multi-category
discrete optimization problems COMBO outperforms all
competitors.

COMBO: Combinatorial Bayesian Optimization using Graph Representations

References
Baptista, R. and Poloczek, M. Bayesian Optimization of

Combinatorial Structures. In International Conference
on Machine Learning, pp. 462–471, 2018.

Chung, F. R. Spectral graph theory (cbms regional confer-
ence series in mathematics, no. 92). 1996.

Garrido-Merchán, E. C. and Hernández-Lobato, D. Dealing
with Categorical and Integer-valued Variables in Bayesian
Optimization with Gaussian Processes. arXiv preprint
arXiv:1805.03463, 2018.

Hammack, R., Imrich, W., and Klavžar, S. Handbook of
product graphs. CRC press, 2011.

Hu, Y., Hu, J., Xu, Y., Wang, F., and Cao, R. Z. Con-
tamination control in food supply chain. In Simulation
Conference (WSC), Proceedings of the 2010 Winter, pp.
2678–2681. IEEE, 2010.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential
model-based optimization for general algorithm config-
uration. In International Conference on Learning and
Intelligent Optimization, pp. 507–523. Springer, 2011.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global optimization, 13(4):455–492, 1998.

Khanna, S., Motwani, R., Sudan, M., and Vazirani, U. On
syntactic versus computational views of approximability.
SIAM Journal on Computing, 28(1):164–191, 1998.

Kondor, R. I. and Lafferty, J. Diffusion kernels on graphs
and other discrete structures. In International Conference
on Machine Learning, volume 2002, pp. 315–322, 2002.

Laguna, M. and Martı́, R. Experimental testing of advanced
scatter search designs for global optimization of multi-
modal functions. Journal of Global Optimization, 33(2):
235–255, 2005.

Lam, R., Poloczek, M., Frazier, P., and Willcox, K. E. Ad-
vances in Bayesian Optimization with Applications in
Aerospace Engineering. In 2018 AIAA Non-Deterministic
Approaches Conference, pp. 1656, 2018.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018.

MacKay, D. J. Bayesian nonlinear modeling for the predic-
tion competition. ASHRAE transactions, 100(2):1053–
1062, 1994.

Močkus, J. On Bayesian methods for seeking the extremum.
In Optimization Techniques IFIP Technical Conference,
pp. 400–404. Springer, 1975.

Neal, R. M. Bayesian learning for neural networks. PhD
thesis, University of Toronto, 1995.

Neal, R. M. Slice sampling. Annals of Statistics, pp. 705–
741, 2003.

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., and
Vandergheynst, P. Graph signal processing: Overview,
challenges, and applications. Proceedings of the IEEE,
106(5):808–828, 2018.

Osborne, M. A., Garnett, R., and Roberts, S. J. Gaussian
processes for global optimization. In 3rd International
Conference on Learning and Intelligent Optimization
(LION3), pp. 1–15, 2009.

Rasmussen, C. E. and Williams, C. K. Gaussian processes
for machine learning. the MIT Press, 2006.

Schäfer, C. Particle algorithms for optimization on binary
spaces. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 23(1):8, 2013.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A
review of Bayesian Optimization. Proceedings of the
IEEE, 104(1):148–175, 2016.

Smola, A. J. and Kondor, R. Kernels and regularization
on graphs. In Learning theory and kernel machines, pp.
144–158. Springer, 2003.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In Advances in neural information processing systems,
pp. 2951–2959, 2012.

Spears, W. M. Simulated annealing for hard satisfiability
problems. In Cliques, Coloring, and Satisfiability, pp.
533–558. Citeseer, 1993.

Syslo, M., Deo, N., and Kowalik, J. S. Discrete optimization
algorithms: with Pascal programs. Dover Publications,
2006.

Wilson, A., Fern, A., and Tadepalli, P. Using trajectory
data to improve Bayesian optimization for reinforcement
learning. The Journal of Machine Learning Research, 15
(1):253–282, 2014.

Supplementary Material
Combinatorial Bayesian Optimization using Graph Representation

1. The graph Cartesian product
The resulting graph G = (V, E) from the Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2), namely,
G = G1�G2, is defined as follows:

V =V1 × V2, (9)(
(v1, v2), (v′1, v

′
2)
)
∈ E ⇔

v1 = v′1 ∈ V1 ∧ (v2, v
′
2) ∈ E2 ∨

(v1, v
′
1) ∈ E1 ∧ v2 = v′2 ∈ V2. (10)

To scale up computations for large graphs, we use the following property of the graph Cartesian product (Hammack et al.,
2011). For the eigensystems {(λ(1)i , u

(1)
i)} and {(λ(2)j , u

(2)
j)} of G1 and G2, respectively, the eigensystem of G1�G2 is given

by {(λ(1)i + λ
(2)
j , u

(1)
i ⊗ u

(2)
j)}, where ⊗ denotes the Kronecker product.

2. COMBO algorithm: Additional details
Optimization of the acquisition function Since the search space is represented by a graph, we need to evaluate graph
nodes by the acquisition function. In this paper, in order to optimize the acquisition function, we rely on greedy optimization
on a graph. Namely, at a given vertex, we compare values of the acquisition function at all neighboring vertices and move to
the vertex with the highest acquisition function value, if it is different than the given vertex. Having evaluated the objective
function at the next vertex, we repeat the procedure until a stopping criterion is met. We start by randomly picking a starting
vertex.

To further increase exploration capabilities of the optimization procedure, we keep a set of k candidates1, denoted by C, for
which we run greedy optimization in parallel. The candidates consists of vertices that are closest to the current best vertex.

In our framework we can use any existing acquisition function like GP-UBC or the Expected Improvement (EI) (Rasmussen
& Williams, 2006). We opt for EI.

Determination of the scaling factors Determining β’s is crucial for obtaining a flexible kernel function. For each βi we
use a uniform prior over [0, 2]. Then, we sample from the posterior of β’s, p(β|D), using slice sampling (Neal, 2003) within
Gibbs sampling. At each step of the Bayesian Optimization procedure we use a couple of samples2 to determine βi. For
each βi the sampling procedure is the following:
1. Set t = 0 and choose a starting β(t)

i for which the probability is non-zero.
2. Sample a value q uniformly from [0, p(β

(0)
i |D, β

(0)
−i)].

3. Draw a new value β(t+1)
i uniformly from regions for which p(β(t)

i |D, β
(t)
−i) > q.

4. Repeat from 2 using β(t+1)
i .

1In the experiments we use k = 20 points.
2In the experiments we use 10 samples.

COMBO: Combinatorial Bayesian Optimization using Graph Representations

3. Problem descriptions
3.1. Discretized Branin

The Branin benchmark is an optimization problem of a non-linear function over a 2D search space (Jones et al., 1998). We
discretize the search space, namely, we consider a grid of points. The problem becomes a discrete optimization problems
with ordinal variables. Since the Branin cost function is a smooth function, the problem preserves this property. That said,
examining the behavior of COMBO and other competing methods on this simplified problem allows for deriving insights
regarding Bayesian Optimization methods on ordinal inputs. We set the budget to 100 evaluations.

3.2. Contamination Control

The contamination control in food supply chain is a binary optimization problem (Hu et al., 2010). The problem is
about minimizing the contamination of food where at each stage a prevention effort can be made to decrease a possible
contamination. Applying the prevention effort results in an additional cost ci. However, if the food chain is contaminated at
stage i, the contamination spreads at rate αi. The contamination at the i-th stage is represented by a random variable Γi.
A random variable zi denotes a fraction of contaminated food at the i-th stage, and it could be expressed in an recursive
manner, namely, zi = αi(1− xi)(1− zi−1) + (1− Γixi)zi−1, where xi ∈ {0, 1} is the decision variable representing the
preventing effort at stage i. Hence, the optimization problem is to make a decision at each stage whether the prevention
effort should be applied so that to minimize the general cost while also ensuring that the upper limit of contamination
is ui with probability at least 1 − ε. The initial contamination and other random variables follow beta distributions that
results in the following objective function: L(x) =

∑d
i=1

[
cixi + ρ

T

∑T
k=1 1{zk>ui}

]
+ λ‖x‖1, where λ is a regularization

coefficient, ρ is a penalty coefficient (we use ρ = 1) and we set T = 100. Following (Baptista & Poloczek, 2018), we
assume ui = 0.1, ε = 0.05, and λ ∈ {0, 10−4, 10−2}. We set the budget to 270 evaluations.

3.3. Sparsification of Ising models

This optimization problem is about approximating a zero-field Ising model expressed by p(z) = 1
Zp

exp{z>Jpz}, where
z ∈ {−1, 1}n, Jp ∈ Rn×n is an interaction symmetric matrix, and Zp =

∑
z exp{z>Jpz} is the partition function, using

a model q(z) with Jqij = xijJ
p
ij where xij ∈ {0, 1} are the decision variables. The objective function is the regularized

Kullback-Leibler divergence between p and q, namely: L(x) = DKL(p||q) + λ‖x‖1, where λ > 0 is the regularization
coefficient. DKL could be calculated analytically (Baptista & Poloczek, 2018). We follow the same setup as presented
in (Baptista & Poloczek, 2018), namely, we consider 4× 4 grid of spins, and interactions are sampled randomly from a
uniform distribution over [0.05, 5]. The exhaustive search requires enumerating all 224 configurations of x that is infeasible.
We consider λ ∈ {0, 10−4, 10−2}. We set the budget to 170 evaluations.

4. Pest control
In the chain of locations, pest is spread in one direction, at each pest control point, the pest control officer can choose to use
a pesticide from 4 different companies which differ in their price and effectiveness.

For N pest control points, the search space for this problem is 5N , 4 choices of a pesticide and the choice of not using any
of it.

The price and effectiveness reflect following dynamics.

• If you have purchased a pesticide a lot, then in your next purchase of the same pesticide, you will get discounted
proportional to the amount you have purchased.

• If you have used a pesticide a lot, then pests will acquire strong tolerance to that specific product, which decrease
effectiveness of that pesticide.

Formally, there are four variables: at i-th pest control Zi is the portion of the product having pest, Ai is the action taken,
C

(l)
i is the adjusted cost of pesticide of type l, T (l)

i is the beta parameter of the Beta distribution for the effectiveness of
pesticide of type l. It starts with initial Z0 and follows the same evolution as in the contamination control, but after each
choice of pesticide type whenever the taken action is to use one out of 4 pesticides or no action. {C(l)

i }1,··· ,4 are adjusted

COMBO: Combinatorial Bayesian Optimization using Graph Representations

in the manner that the pesticide which has been purchased most often will get a discount for the price. {T (l)
i }1,··· ,4 are

adjusted in the fashion that the pesticide which has been frequently used in previous control point cannot be as effective as
before since the insects have developed tolerance to that.

The portion of the product having pest follows the dynamics below

zi = αi(1− xi)(1− zi−1) + (1− Γixi)zi−1 (11)

when the pesticide is used, the effectiveness xi of pesticide follows beta distribution with the parameters, which has been
adjusted according to the sequence of actions taken in previous control points.

Under this setting, our goal is to minimize the expense for pesticide control and the portion of products having pest while
going through the chain of pest control points. The objective is similar to the contamination control problem

L(x) =

d∑
i=1

[
cixi +

ρ

T

T∑
k=1

1{zk>ui}

]
(12)

However, we want to stress out that the dynamics of this problem is far more complex than the one in the contamination
control case. First, it has 25 variables and each variable has 5 categories. More importantly, the price and effectiveness of
pesticides are dynamically adjusted depending on the previously made choice.

5. Additional results
In the next subsection we present additional results for the four benchmark problems considered in the paper.

5.1. Discretized Branin

Figure 1. Results for the discretized Branin benchmark.

5.2. Contamination control

Figure 2. Results for the contamination control: (left) λ = 0, (middle) λ = 0.0001, (right) λ = 0.01.

COMBO: Combinatorial Bayesian Optimization using Graph Representations

5.3. Sparsification of Ising models

Figure 3. Results for the sparsification of Ising models: (left) λ = 0, (middle) λ = 0.0001, (right) λ = 0.01.

