
Unsupervised extraction of interpretable graph representations
from multiple-object scenes

Duo Wang 1 Mateja Jamnik 1 Pietro Lio 1

Abstract
In this work we present Discrete Attend Infer Re-
peat (Discrete-AIR), a model for extracting in-
terpretable object-level representation in an unsu-
pervised way. Discrete-AIR is a Recurrent Auto-
Encoder with structured latent distributions con-
taining discrete categorical distributions, contin-
uous attribute distributions, and factorised spa-
tial attention. We show that for efficient infer-
ence in the case of Multi-MNIST (Eslami et al.,
2016) and Multi-Sprites (Matthey et al., 2017)
datasets, the Discrete-AIR model needs just one
categorical latent variable, one attribute variable
(for Multi-MNIST only), together with spatial at-
tention variables. We perform analysis to show
that the learnt categorical distributions achieves
87.0% and 94.5% category correspondence rate
for Multi-MNIST and for Multi-Sprites. We also
discuss ways of constructing interpretable initial
edge embedding from the object representations.

1. Introduction and related works
Many real-world tasks, such as inferring physical relation-
ships between objects in an image and visual-spatial reason-
ing, requires identifying and learning a useful representation
of elements in the scene and representations of relations
between each elements. The elements in the scene are es-
sentially nodes in a graph and the relationships between
elements are edges. Whilst there are many proposed meth-
ods (Kipf & Welling, 2016; Veličković et al., 2017; Battaglia
et al., 2018) in processing such graphs, there are few meth-
ods for extracting graph representations from raw input
images. We propose Discrete-AIR, a model that extract
fully interpretable object-level representations from input
images without any supervision signal, which subsequently
allows initializing edge representation with interpretable

1Department of Computer Science and Technology, University
of Cambridge, Cambridge, UK. Correspondence to: Duo Wang
<duo.wang@cl.cam.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

embeddings.

Our model builds upon Attend-Infer-Repeat (AIR) model
by Eslami et al (Eslami et al., 2016), a recurrent-VAE de-
veloped to decompose a scene into multiple objects with
each represented by latent code z = (zwhat, zwhere, zpres).
While this latent code disentangles spatial information
zwhere and object presence zpres, the object representation
zwhat is an entangled real-valued vector in the end-to-end
trainable setting and thus difficult to interpret. Discrete-
AIR, an end-to-end trainable autoencoder which structures
latent representation zwhat into zcat representing category
of objects and zattr representing attributes of objects. With
this disentangled node-level representations, we can readily
compute initial edge embeddings in the form of distances
between different parts of latent variables.

Related to this work are other approaches which decom-
pose scenes into different categories. Neural Expectation
Maximization (NEM) by Greff et al (Greff et al., 2017)
implemented Expectation-Maximization algorithm with an
end-to-end trainable neural network. NEM is able to percep-
tually group pixels of an image into different clusters. How-
ever, it does not learn a generative model that allows control-
lable generation like using zcat and zwhere in Discrete-AIR,
and does not learn disentangled latent variables in the gener-
ative model setting. Ganin et al (Ganin et al., 2018) train a
neural network to synthesize programs that can be fed into
a graphics engine to generate scenes. While it learns an
inference model for the generative model, a graphics engine
that can provide learning gradients is pre-defined and not
learnt. In contrast, Discrete-AIR jointly learns an inference
model and a generative model from scratch.

We test Discrete-AIR model on two multi-object datasets,
namely Multi-MNIST dataset as used in the original AIR
model (Eslami et al., 2016) and a multi-object dataset in
similar style as the dSprites dataset (Matthey et al., 2017).
We show that unsupervised training of Discrete-AIR model
is able to effectively capture the categories of objects in the
scene. We also propose a method of constructing meaning-
ful edge embeddings between node representations.

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

2. Discrete Attend Infer Repeat
Attend-Infer-Repeat (AIR) model, introduced by Eslami
et al (Eslami et al., 2016), is a recurrent version of Varia-
tional Auto-Encoder (VAE) (Kingma & Welling, 2013) that
decomposes a scene into multiple objects represented by
latent code zi = (ziwhat, z

i
where, z

i
pres) at each recurrent

time step i. For details of AIR model we refer readers to
Appendix A. While the AIR model can encode objects in
a scene into latent code zwhat, the representation is still
entangled and therefore not interpretable. In Discrete-AIR,
we introduce structure into the latent distribution to encour-
age disentanglement. We break zwhat into zcat and zattr.
zcat is discrete latent variable that captures the category of
the object, while zattr is a combination of continuous and
discrete latent variables that captures attributes of the object.
We do not use any objective function to encourage zcat to
capture category and zattr to capture attributes. Rather, we
allow the model to automatically learn the best way of using
these discrete and latent variables through the process of
likelihood maximisation.

In Discrete-AIR, we treat binary discrete variables as scalar
of 0/1 values and multi-class categorical discrete variables
as one-hot vectors. As sampling from a discrete distribution
is non-differentiable, we model discrete latent variables with
Gumbel Softmax (Maddison et al., 2016; Jang et al., 2016),
a continuous approximation to the discrete distribution from
which we can sample approximately one-hot discrete vec-
tors. We refer readers to Appendix B for detailed discussion
of Gumbel Softmax.

2.1. Generative model

The probabilistic generative model is shown in Figure 1.
From zcat, a template Tzcat of this object category is gener-
ated. This template is then modified by attributes zattr into
an image of object o that is subsequently drawn onto the
canvas using spatial write attention. zcat, zattr, zwhere and
zpres, jointly as zt, are estimated from the inference model
for each time step t of inference.

Figure 1. Generative Model of Discrete-AIR.

We replace the decoder function fdec(z
i
what) from the

original AIR model with a new function fdec(zicat, z
i
attr)

parametrized by category variable zcat and zattr. There are
various candidate functions for combining zcat and zattr.
We have experimented with three different variations and
found that additive function f(ft(z

i
cat) + fa(ziattr)) or mul-

tiplicative function f(ft(z
i
cat)� fa(ziattr)) works similarly

well.

In the original AIR model, the spatial transformation oper-
ation specified by attention variable zwhere only contains
translation and scaling. Affine transformations such as ro-
tation and shearing are accounted for in the latent variable
in an entangled way. In Discrete-AIR, we explicitly intro-
duce additional spatial transformer networks that account
for rotation and skewing, thereby allowing zattr to have a
reduced number of variables. The spatial attention for the
generative decoder is thus factorised as in Equation 1:

T d = T d
stT

d
r T

d
k = (1)sx 0 tx

0 sy ty
0 0 1

cos(ω) sin(−ω) 0
sin(ω) cos(ω) 0

0 0 1

1 + kxky kx 0
ky 1 0
0 0 1


where T d

st is the combined transformation matrix of transla-
tion and scaling used in the original AIR model, Tr is the
transformation matrix for rotation and Tk is the transforma-
tion matrix for skewing. In the matrix, sx and sy are for
scaling, tx and ty are horizontal and vertical translations, ω
is an angle of rotation, kx and ky are parameters for shearing
in horizontal and vertical axis.

2.2. Inference

Figure 2 shows an overview of the Discrete-AIR archi-
tecture. At inference step t, a difference image between
input image D and previous canvas Ct−1 is fed together
with previous latent code zt−1 into a Recurrent Neural Net-
work (RNN), implemented as Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) to generate pa-
rameters of the distribution for zwhere and zpres. Spatial At-
tention module then attends to parts of the image and applies
transformation according to zwhere. We enforce the encod-
ing transformation T e to be the inverse of decoding trans-
formation T d, which means T eT d = I . This constraint
forces the model to match attended objects in the scene with
the invariant template specified by zcat. In practice, we
compute T e as the product of inverses of the transformation
matrices composing T d: T e = T d−1 = T d

k

−1
T d
r
−1

T d
st
−1

The transformed image is then processed by an encoder
to estimate parameters of distributions for zcat and zattr.
zcat are sampled from Gumbel Softmax as discussed in
Appendix B. zattr can be sampled from any distribution
that is suitable for the paradigm of tasks. For tasks pre-
sented, continuous variables such as the colour intensity or
part deformation of an object can be sampled from a multi-
variate Gaussian distribution using the Re-parameterisation
trick (Kingma & Welling, 2013), which allows gradient to
pass through the originally un-differentiable sampling func-
tion. The generative model described in Section 2.1 then

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

Figure 2. Overview of Discrete-AIR architecture. Blue parts are neural-network trainable modules and yellow parts are sampling processes.

samples zcat and zattr from the distributions in order to
generate an object that will be written to canvas Ct using
spatial attention module.

2.3. Learning

Similar to the original AIR model, we train Discrete-AIR
model end-to-end by maximizing the lower bound on the
marginal likelihood of data:

log pθ(x) ≤ L(θ, φ) = Eqφ
[

log
pθ(x, z, n)

qφ(z, n|x)

]
(2)

In the original AIR model, one cannot further rearrange
this equation due to undifferentiable discrete variable sam-
pling process used. For Discrete-AIR, by using Gubmel-
Softmax as a reparameterised sampling process, we can
rearrange Equation 2 as L = Eqφ

[
log pθ(x|z, n)

]
−

DKL(qφ(z, n|x)||p(z, n)) where pθ(x|z, n) is data likeli-
hood and DKL is Kullback-Leibler (KL) divergence, same
as the original VAE (Kingma & Welling, 2013). Comput-
ing ∂L

∂θ , the loss derivative with respect to parameters of
the generative model, is relatively straightforward as it is
fully differentiable. With a sampled batch of latent codes
z = (zcat, zattr, zwhere, zpres) ∼ q(·|x), the partial deriva-
tive ∂

∂θpθ(x|z, n) can be directly computed.

When computing ∂L
∂φ , we can use the re-parametrisation

trick (Kingma & Welling, 2013) to re-parametrise the sam-
pling of both, continuous and discrete latent variables as
a deterministic function in the form h(ωi, εi). ωi is the
parameters of the distributions for z at time step i, and εi

are random noise at time step i. In this way we can use
the chain rule to compute the gradient with respect to φ as
∂L
∂φ = ∂L

∂h ×
∂h
∂ωi ×

∂ωi

∂φ .

For our experiments, we parametrise continuous variables as
multivariate Gaussian distributions with a diagonal covari-
ance matrix and discrete variables as use Gumbel-Softmax
distribution, which is itself a re-parametrised differentiable

sampling function. For more details, please refer to Ap-
pendix C.2.

2.4. Edge Embedding

The output of Discrete-AIR is a list of object-level embed-
dings z = (zcat, zattr, zwhere, zpres). We can build a graph
representation by firstly instantiating nodes for embeddings
with zpres = 1 and subsequently instantiating embeddings
of edges by computing distances between sub-variables of
z. For details, please refer to Appendix C.3. For illustration,
we embed zwhere distance as ziwhere− z

j
where with an edge

direction indicator di,j . We use L2 distance for zattr and
equality function 1(zi = zj) for zcat.

3. Evaluation
We evaluate Discrete-AIR on two multi-object datasets,
namely Multi-MNIST dataset as used in the original AIR
model (Eslami et al., 2016) and a multi-object shape
dataset comprising of simple shapes similar to dSprites
dataset (Matthey et al., 2017). We perform experiments to
show that Discrete-AIR, while retaining the original strength
of the AIR model of discovering the number of objects in
a scene, can additionally categorise each discovered object.
In order to evaluate how accurately can Discrete-AIR cat-
egorise each object, we compute the correspondence rate
between the best permutation of category assignments from
Discrete-AIR model and the true labels of the dataset.

We briefly explain the metric used for evaluating category
correspondence between Discrete-AIR assigned categories
and the ground-truth categories. For a more detailed discus-
sion, please see Appendix D. We define a function fp(C, p)
where C is a set or array of sets, and p is an index per-
mutation function to map elements in C. For the whole
dataset, we have an array of predicted category set O and an
array of true label set T . We define correspondence rate as
in(O, T)/size(T) where in(O, T) gives the number of true

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

labels t in T that are correctly identified inO. size(T) gives
the total number of labels. We thus compute the best corre-
spondence rate as Rcorr = maxp∈P

in(fp(O,p),T)
size(T) , where P

is the set of all possible permutations of predicted categories.
This score is ranging from 0 to 1, and the score of a random
category assignment should have the expected score of 1/k
where k is the number of categories.

3.1. Multi-Sprites

To evaluate Discrete-AIR, we have built a multi-object
dataset in similar style as the dSprites dataset (Matthey
et al., 2017). This dataset consists of 90000 images of pixel
sizes 64× 64. In each image there are 0 to 3 objects with
shapes in the categories of square, triangle and ellipse. The
objects’ spatial locations, orientations and size are all sam-
pled randomly from uniform distributions. Details about
constructing this dataset can be found in Appendix B. Fig-
ure 3 (a) illustrates the application of Discrete-AIR on the
Multi-Sprites dataset. The left and middle figures show sam-
ples of input data from the dataset with each object detected
and categorised (with differently coloured bounding box)
and reconstructed images by the Discrete-AIR model. The
number at the top-left corner shows the estimated number
of objects in the scene. The right graph illustration shows
interpretable edge embedding between each object in the
scene. For interpretable node embedding please refer to
Multi-MNIST illustration in Figure 3 (b). For this dataset,
we used a discrete variable of 3 categories as zcat together
with spatial attention variables zwhere. We did not include
zattr for this dataset as the attributes of each object, includ-
ing location, orientation and size, can all be controlled by
zwhere. We did not include shear transformation T d

k in the
spatial attention as the dataset generation process does not
have a shear transformation. For more details about the
architecture, please see Appendix A. For quantitative evalu-
ation of Discrete-AIR we use two metrics, count accuracy
of number of objects in the scene and categorical correspon-
dence rate. We also compare Discrete-AIR with AIR for the
first two metrics. Table 1 shows the performance for these
three objectives. We report mean performance across 10
independent runs. Discrete-AIR has slightly better count
accuracy than AIR, and is able to categorise objects with
a mean category correspondence rate of 0.945. The best
achieved correspondence rate is 0.967.

Model Multi-Sprites Multi-MNIST
count acc. cat. corr. count acc. cat. corr.

D-AIR 0.985 0.945 0.984 0.87
AIR 0.981 N/A 0.985 N/A

Table 1. Quantitative evaluation of Discrete-AIR (D-AIR) and
comparison with AIR model.

(a)

(b)

Figure 3. Input data, reconstruction and learned latent codes from
Discrete-AIR model for (a) Multi-Sprites and (b) Multi-MNIST
datasets. The coloured bounding boxes show each detected ob-
ject. The number at the top-left corner shows the count of num-
ber of objects in the image. (a) shows interpretable edge em-
beddings.’CatEq’ indicates equality in category. (b) shows node
embeddings. ’attr’ shows zattr value.

3.2. Multi-MNIST

We also evaluated Discrete-AIR on the Multi-MNIST
dataset used by the original AIR model (Eslami et al., 2016).
The dataset consists of 60000 images of size 50× 50. Each
image contains 0 to 2 digits sampled randomly from MNIST
dataset (LeCun et al., 1998) and placed at random spatial
positions. The dataset is publicly available in ’observations’
python package1. For this dataset, we choose a categor-
ical variable with 10 categories as zcat and 1 continuous
variable with Normal distribution as zattr as this gives best
correspondence rate performance. We choose to combine
transformation matrices Tr and Tk as one because this gives
slightly better results. Figure 3 (b) shows sampled input
data from the dataset and reconstruction by Discrete-AIR,
and interpretable latent codes for each digit in the image.
From this figure we can observe clearly that Discrete-AIR
learns to match templates of category zcat with modifiable
attributes zattr to input data. For example, in the recon-
structed image of Figure 3 (b), we can see that Discrete-AIR
picks a template of digit ’3’ and modifies attribute variables
to fit to the style of ’3’ in the input image.

We also performed the same quantitative analysis from
Multi-Sprites dataset, as shown in Table 1. While the
count accuracy of Discrete-AIR and AIR model are very
close, Discrete-AIR is able to categorise the digits in the
image with a mean correspondence rate of 0.871. The best
achieved correspondence rate is 0.913.

1https://github.com/edwardlib/
observations

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

References
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-

Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Eslami, S. A., Heess, N., Weber, T., Tassa, Y., Szepesvari,
D., Hinton, G. E., et al. Attend, infer, repeat: Fast scene
understanding with generative models. In Advances in
Neural Information Processing Systems, pp. 3225–3233,
2016.

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S., and
Vinyals, O. Synthesizing programs for images us-
ing reinforced adversarial learning. arXiv preprint
arXiv:1804.01118, 2018.

Greff, K., van Steenkiste, S., and Schmidhuber, J. Neu-
ral expectation maximization. In Advances in Neural
Information Processing Systems, pp. 6691–6701, 2017.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Jaderberg, M., Simonyan, K., Zisserman, A., et al. Spatial
transformer networks. In Advances in neural information
processing systems, pp. 2017–2025, 2015.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

Matthey, L., Higgins, I., Hassabis, D., and Lerchner,
A. dsprites: Disentanglement testing sprites dataset.
https://github.com/deepmind/dsprites-dataset/, 2017.

Mnih, A. and Gregor, K. Neural variational inference and
learning in belief networks. In International Conference
on Machine Learning, pp. 1791–1799, 2014.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

A. Details of Attend-Infer-Repeat Model
Attend-Infer-Repeat (AIR) model, introduced by Eslami et
al (Eslami et al., 2016), is a recurrent version of Variational
Auto-Encoder (VAE) (Kingma & Welling, 2013) that de-
composes a scene into multiple objects represented by latent
code zi = (ziwhat, z

i
where, z

i
pres) at each recurrent time step

i. Among them zipres is a binary discrete variable encoding
whether an object is inferred in current step i. If zipres is 0,
the inference will be stopped. The sequence of zipres for all
i can be concatenated into a vector of n ones and a final zero.
n therefore is a variable representing the number of objects
in the scene. ziwhere is a spatial attention parameter used to
locate a target object in the image, and ziwhat is the latent
code of the target object. In AIR an amortised variational ap-
proximation qφ(z|x), as computed in equation 3, is used to
approximate true posterior p(z|x) by minimizing KL diver-
gence KL[qφ(z|x)||(z|x)]. In AIR implementation, zwhat
and zwhere are parametrised as Gaussian distributions with
diagonal covariance N (µ,Σ).

qφ(z|x) = q(zn+1
pres|z1:n, x)

n∏
i=1

qφ(zi, zipres = 1|x, z1:i−1)

(3)

In the generative model of AIR, the number of objects n can
be sampled from a prior such as geometric prior, and then
form the sequence of zipres. Next, ziwhat and ziwhere are sam-
pled from N(0, I). An object oi is generated by processing
ziwhat through a decoder. oi is then written to the canvas,
gated by zipres and with scaling and translation specified by
ziwhere using Spatial Transformer (Jaderberg et al., 2015),
a powerful spatial attention module. The generative model
can be summarised in equation 4, where fdec is the decoder,
ST is the spatial transformer and� is element-wise product.

pθ(x|z) = N (x|y, σxI) (4)

y =

n∑
i=1

ST (fdec(z
i
what), z

i
where)� zipres (5)

Inference and generative models of AIR are jointly op-
timized by maximizing the lower bound L(qφ, pθ) =

Eqφ [log pθ(x,z,n)
qφ(z,n|x)]. While sampling operation of z is not

differentiable (which is a requirement for gradient-based
training), there are various ways to circumvent this. For
the continuous latent codes, re-parametrization trick for
VAE (Kingma & Welling, 2013) is applied, which lets pa-
rameters estimated from the inference model to determin-
istically modify a sampled distribution, thereby allowing
back-propagation through the deterministic function. For
discrete latent codes, AIR uses NVIL likelihood ratio esti-
mator introduced by Mnih et al (Mnih & Gregor, 2014) to

produce an unbiased estimate of the gradient for discrete
latent variables.

B. Details of Gumbel Softmax
As sampling from a discrete distribution is non-
differentiable, we model discrete latent variables with Gum-
bel Softmax (Maddison et al., 2016; Jang et al., 2016), a
continuous approximation to the discrete distribution from
which we can sample approximately one-hot discrete vector
y where:

yi =
exp(log ai+giτ)∑k
j=1 exp(

log ai+gi
τ)

; i = 1, . . . , k (6)

ai are a parametrization of the distribution, gi are Gumbel
noise sampled from the Gumbel distribution Gumbel(0, 1),
and τ is temperature parameters controlling smoothness of
the distribution. As τ → 0, the distribution converges to a
discrete distribution. For binary discrete variables such as
zpres, we use Gumbel Sigmoid, which is essentially Gum-
bel softmax with softmax function replaced with Sigmoid
function:

y =
exp(log a+gτ)

1 + exp(log a+gτ)
(7)

In contrast to the NVIL estimator (Mnih & Gregor, 2014)
used in the original AIR model, we found that Gumbel soft-
max/Sigmoid is more stable during training, experiencing
no model collapse during all the training experiments.

C. Details of Architecture and Training
We train Discrete-AIR with the ELBO objective as presented
in equation 2. We use Adam optimiser (Kingma & Ba, 2014)
to optimise the model with batch size of 64 and learning
rate of 0.0001. For Gumbel Softmax, we also applied tem-
perature annealing (Jang et al., 2016) of tau to start with
a smoother distribution first and gradually approximate to
discrete distribution. For more details about training, please
see Appendix A in supplementary material.

C.1. Architecture

We use PyTorch package2 for Python to build the neural
network model. We describe below the details of each
module in discrete-AIR.

Embedding: Embedding module embeds the difference im-
age between input and previous canvas Ct−1 into a feature
vector which are input to the RNN module. For Multi-

2https://pytorch.org/

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

Sprites we use a Convolutional Neural Network as embed-
ding module. The Conv-Net contains three convolutional
layers with number of filters 16, 24, 32. All layers have a
kernel size of 5. Batch Normalization is used for all three
layers. After each Convolutional layer a max-pooling layer
of pool size 2 × 2 is applied. For Multi-MNIST dataset
we did not use an embedding layer, same as original AIR
model, but feed the difference image directly to RNN.

RNN: RNN module takes embedded difference image, to-
gether with latent codes of previous time step zt1 as input,
and generate spatial attention variables ztwhere and pres-
ence variable ztpres for the current step. The RNN is imple-
mented as Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997). The LSTM module has 256 recur-
rent units. We perform gradient norm clipping to stabilize
the training of RNN.

Read Attention: Read attention module takes input image
and spatial attention parameters zwhere. We use two con-
secutive Spatial Transformers (Jaderberg et al., 2015), one
for scaling and translation and the other for rotation and
shearing combined. For Multi-Sprites dataset we did not
include shearing.

Encoder: Encoder takes the spatially attended image patch
and encodes into a set of latent codes. This is implemented
as a CNN of 3 layers with number of filters as 48, 64, 96
and kernel size 5. Batch Normalization is used for all three
layers. We did not use max-pooling layer but instead set the
stride of each convolutional layer to be 2.

Decoder: Decoder decodes latent codes into an recon-
structed image patch. We used additive function to combine
zcat and zattr as discussed in the main text. The detailed
architecture is shown in table 2. For Multi-Sprites dataset,
no attribute variable is used.

zcat zattr
Fully Connected (128 units)
Fully Connected (1024 units)
Resize 1024 to 64× 4× 4
Transposed Conv (64 to 48) Batch-Norm
Transposed Conv (48 to 32) Batch-Norm
Transposed Conv (32 to 1)

Table 2. Decoder Architecture

Write Attention: Write Attention Module takes generated
objects and zwhere and write the object onto the canvas
with two Spatial transformers with inverse transformation
matrices of those in Read Attention Module.

Canvas function: We used an additive canvas function
Ct = Ct−1 +Ot ⊗ ztpres where Ot, the generated object is
gated by the presence variable zpres.

C.2. Latent variables

For the KL-divergence term. We use Gaussian prior for all
continuous variables. While KL divergence between two
Gumbel-Softmax distribution are not available in closed
form, we approximate with a Monte-Carlo estimation of KL
divergence with a categorical prior for zcat, similar as (Jang
et al., 2016). For zpres we used a geometric prior and com-
pute Monte-Carlo estimation of KL divergence (Maddison
et al., 2016).

C.3. Edge Embedding

Here we describe how to initialize edge embedding with
distances computed between nodes for different parts of the
latent variable z. For Spatial variables zwhere we can com-
pute Euclidean L-2 distances with D = (ziwhere−z

j
where)

2.
For object attributes zattr one can use any distance metrics
in the continuous space. For zcat, which is categorical vari-
able representing categories of objects, different distance
metrics might be useful for different tasks. For example
the indicator function 1(zicat, z

i
cat) maybe useful for logic

reasoning. A customized distance matrix between each cate-
gory pair may be useful for object query tasks such as visual
question answering.

C.4. Training

Optimizer: ADAM
Learning Rate: 0.0001
Batch Size: 64
Temperature Annealing Scheme: τ = max(0.5, e−rt)
where t is number of training iterations and r is anneal
rate. We set r to be 0.005 for both experiments.
Training epochs: We trained Multi-Sprites for 300 epochs
and Multi-MNIST for 420 epochs. This is determined by re-
construction loss not improving for 10 consecutive epochs.

D. Metrics for category correspondence
To explain the metric we used, we first define a few nota-
tions. For each input image xi, Discrete-AIR generates a
corresponding category latent code zicat and presence vari-
able zipres. From this we can form a set of predicted object
categoriesOi = {oi1, . . . , oin} for n predicted objects where
oik is the kth object category. For each image we also have a
set of true labels of existing objects T i = {ti1, ..tim}. Due to
non-identifiability problem of unsupervised learning where
a simple permutation of best cluster assignment will give
the same optimal result, the category assignments produced
by Discrete-AIR do not necessarily correspond to the labels.
For example, an image patch of digit 1 could fall into cat-
egory 4. We thus permute the category assignments and
use the permutation that corresponds best with the true la-
bel as the category assignment. For example, for predicted

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

category set {1, 4, 2, 2, 3} and true label set {4, 0, 1, 1, 5},
we can use the following permutation of category for pre-
dicted category set (1 → 4, 4 → 0, 2 → 1, 3 → 5) to
achieve best correspondence. To put it more formally, we
define a function fp(C, p) where C is a set or array of
sets, and p is an index permutation function to map ele-
ments in C. For the whole dataset, we have an array of
predicted category set O and an array of true label set T .
We define correspondence rate as in(O, T)/size(T) where
in(O, T) gives the number of true labels t in T that are
correctly identified in O. size(T) gives the total number
of labels. We thus compute the best correspondence rate as
Rcorr = maxp∈P

in(fp(O,p),T)
size(T)

where P is the set of all possible permutations of predicted
categories. This score is ranging from 0 to 1, and the score of
a random category assignment should have expected score
of 1/k where k is the number of categories.

E. More examples of learnt latent code

F. Building Multi-Sprites Dataset
We built the Multi-Sprites dataset using the following
pseudo code:

Algorithm 1 Bubble Sort

Input: num to generate N , num max objects M
for i = 1 to N do
nobj = RandomInt(M)
List of objects L initalized
for j = 1 to nobj do
Category = RandomInt(num of classes)
x = RandomUniform(xmin,xmax)
y = RandomUniform(ymin,ymax)
angle = RandomUniform(-π,π)
O = generate(Category, x, y, angle)
while Overlap(O,L) ¿ threshold do

Repeat generation
end while
Append O in L

end for
Image = paint(L)

end for

G. Analysis of failures
For Multi-Sprites dataset, the model perform less well when
objects are too small. This is because small objects only oc-
cupies tens of pixels space and are thus heavily sub-sampled
in the rasterization process. This causes the difference be-
tween different shapes to be indistinguishable.

For Multi-MNIST dataset, the model occasionally learn to

(a) Data

(b) Reconstruction

(c) Latent codes

Figure 4. Input data from Multi-Sprites dataset and reconstruction
from Discrete-AIR model. The coloured bounding boxes show
each detected object. The number at the top-left corner shows the
count of number of objects in the image. Latent codes representing
the scene, including object categories, sizes, spatial locations and
orientation are also presented.

use one category for two similar-looking digits by encoding
the difference in the attribute variable, thereby causing con-
siderable drop in correspondence rate. Figure 6 illustrates
the case between digit 4 and 9 and digit 3 and 8.

H. Varying attribute variables
Figure 7 shows a sampled generated image. Two digits
are generated in subsequent images with attribute variable
increasing from top to bottom. In the first sequence we
generate digits ’5’ and ’2’ while in the second sequence
we generate digits ’3’ and ’9’. We can observe that the
learnt attribute variable zattr encodes attributes that cannot
be encoded by affine transformation spatial variable zwhere.
For example, increasing zattr increases the size of the hook
space in digit ’5’, the hook space in digit ’2’, and the hook
curve in digit ’9’.

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

(a) Data

(b) Reconstruction

(c) Latent codes

Figure 5. Input data from Multi-MNIST dataset and reconstruction
from Discrete-AIR model. The coloured bounding boxes show
each detected object. The number at the top-left corner shows the
count of number of objects in the image. Latent codes representing
the scene, including digit categories, attribute variable value, sizes
and spatial locations are also presented.

(a) 4 and 9

(b) 3 and 8

Figure 6. Illustration of Discrete-AIR model occasionally squeeze
two digits into one category.

I. Some more reconstructions
Figure 8 shows additional samples of step-by-step recon-
struction for Multi-MNIST dataset. Figure 9 shows this for

Figure 7. Generation of images by Discrete-AIR.

Multi-Sprites dataset.

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

(a) original input

(b) 1st step recon (c) 2nd step recon

Figure 8. Illustration of reconstruction for Multi-MNIST.

Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat

(a) original input (b) 1st step recon

(c) 2nd step recon (d) 3rd step recon

Figure 9. Illustration of reconstruction for Multi-Sprites.

