
Interpretable node embeddings with mincut loss

Chi Thang Duong 1 Quoc Viet Hung Nguyen 2 Karl Aberer 1

Abstract
To construct node embeddings in an unsupervised
manner, most graph embedding techniques follow
the homophily principle whereby similar nodes
in a graph should have close embeddings. Ex-
isting embedding techniques interpret the simi-
larity of nodes from their distances on a graph.
In this paper, we propose designating nodes as
similar when they exhibit similar membership to
different communities. To this end, we propose a
new differentiable loss function called the mincut
loss designed to minimize the number of connec-
tions between communities. Each dimension of
the embeddings learned using the mincut loss is
interpretable as it represents a probability of as-
signment of a node to a community, which we
demonstrate on a word-adjacency graph. More-
over, we provide empirical evidences that the pro-
posed embedding method remains competitive in
node classification and link prediction tasks.

1. Introduction
Graphs serve as a natural representation of relations be-
tween entities in complex systems, such as social networks
or information networks. To enable inference on graphs, a
graph embedding may be learned. It comprises node embed-
dings, each being a vector-based representation of a graph’s
node that incorporates its relations to other nodes (Hamilton
et al., 2017; Goyal & Ferrara, 2018). Most popular unsu-
pervised graph embedding approaches are designed to learn
node embeddings such that “similar” nodes in a graph have
close embeddings. Traditional approaches measure the sim-
ilarities between nodes mainly based on their distances on
a graph (e.g., the probability of cooccurring on a random
walk) (Goyal & Ferrara, 2018).

In this paper, we propose a different perspective to capture
node similarities based on their community membership.
We consider a community as a set of nodes such that there

1LSIR, EPFL, Switzerland 2Griffith University, Australia. Cor-
respondence to: Chi Thang Duong <thang.duong@epfl.ch>.

Presented at the ICML 2019 Workshop on Learning and Reasoning
with Graph-Structured Data Copyright 2019 by the author(s).

are more intra-edges than inter-edges between communities.
The homophily principle can be restated as follows: nodes
with similar community membership should have close em-
beddings. For n communities, the likelihood of a node
v being assigned to a community can be measured from
membership probability. In other words, the community
membership of a node to n communities forms a probabil-
ity distribution. Intuitively, nodes are similar when their
membership distributions are similar. For instance, nodes
u and v are similar when their likelihood of assignment
to community A is high while it is low for community B
(assuming that there are only 2 communities).

As communities are not known beforehand, we propose a
new loss function (called mincut loss) that allows us to learn
the node embeddings and communities at the same time.
The mincut loss is defined based on the principle that com-
munities are well-separated when there are few connections
between them (Fortunato, 2010). Nodes are assigned to n
communities based on node embeddings in such a way that
minimizes the mincut loss. As node embeddings are contin-
uous, we propose using Gumbel-Softmax (Maddison et al.,
2016; Jang et al., 2016) to sample discrete one-hot vectors
from continuous node embeddings representing node mem-
bership to communities. This also renders the mincut loss
differentiable, which allows us to learn node embeddings
and communities in an end-to-end fashion.

In addition, the mincut loss allows us to learn node embed-
dings such that embedding dimensions are interpretable as
the i-th element of a node embedding is the unnormalized
probability of a node belonging to the i-th community. The
node embeddings learned using the mincut loss can outper-
form several traditional distannce-based graph embedding
approaches(Perozzi et al., 2014; Grover & Leskovec, 2016).
In addition, our node embeddings are interpretable. An
experiment using a word adjacency graph confirms this
property, as words with high embedding values along a
dimension belong to the same topic.

The rest of the paper is organized as follows. We discuss
related works in Section 2. Our proposed mincut loss is
discussed in Section 3 while our framework for learning
node embeddings with the mincut loss is described in Sec-
tion 4. The experimental results are shown in Section 5 and
Section 6 concludes the paper.



Interpretable node embeddings with mincut loss

2. Related works
Graph embedding. Graph representation learning aims to
construct a low-dimensional model of nodes in a graph that
incorporates the graph’s structure (Hamilton et al., 2017;
Goyal & Ferrara, 2018). Although there are several ways
to embed nodes (Perozzi et al., 2014; Grover & Leskovec,
2016), the majority of unsupervised learning mainly lever-
ages the skipgram loss (Hamilton et al., 2017) whereby
embeddings of nodes positioned close together in a graph
have high levels of cosine similarity. In this paper, we pro-
pose a new loss function that measures the quality of node
embeddings based on their ability to partition a graph into
well separated communities. The mincut loss is orthogonal
to the skipgram loss, as they can be used together.

Graph partitioning. The closest to our work is (Nazi et al.,
2019) in which the authors propose a partition loss function
for graph partitioning. The loss function aims for balanced
partitions based on the number of nodes, which is not ap-
plicable in our setting. In addition, the loss function is
susceptible to a local optima where all nodes are assigned
to one partition. By using Gumbel-softmax, our mincut loss
is free of this degenerate case. On the other hand, graph par-
titioning can be considered as a special case of community
detection problem (Fortunato, 2010). While the latter allows
for different community sizes in term of nodes, the former
does not. Most popular community detection algorithms
are based on the modularity metric, which can be captured
by the modularity loss function. Our empirical evaluation
shows our mincut loss to perform better than the modularity
loss for different datasets.

3. Mincut loss
3.1. Preliminaries

Graph model. We represent a graph G = {V,E} by its
nodes V = {vi} and edges E = {(vi, vj)|vi ∈ V ∧ vj ∈
V }. A graph can also be modeled from its adjacency matrix
A where each row/column represents a node in G and a cell
A(i, j) corresponding to the edge weight between vi, vj .

Edge cut. A graph G can be divided into m disjoint com-
munities C = {C1, C2, · · · , Cm} where

⋃
i=1,m Ci = V

and ∀Ci 6= Cj , Ci ∩ Cj = ∅. We also denote C̄i =
V \ Ci as the complement of Ci. Given a community C
and its complement C̄, its edge-cut cut(C) is defined as
cut(C) =

∑
(vi,vj)∈E 1vi∈C,vj∈C̄ . For a set of communi-

ties C = {C1, · · · , Cm}, its edge-cut is defined as follows:

c(C) = c(C1, · · · , Cm) =
1

2

∑
c(Ci)

To form well-defined communities, nodes are assigned to
communities such that the edge-cut c(C) is minimized.

3.2. Mincut loss

The mincut loss takes the node embeddings as input and
measures how well embeddings can be used to separate the
graphs into communities. In the following, we discuss how
to compute the edgecut given the node embeddings. The
process for computing the mincut loss is shown in Figure 1.

We assume an embedding function fθ : V → Rm embeds
a node to an m-dimensional space where θ denotes its pa-
rameters. We denote the embedding matrix as E ∈ Rn×m
where each row denotes a node embedding.

Computing edge cut. The assignment of nodes to com-
munities can be captured by membership matrix P ∈
{0, 1}n×m with rows representing nodes in G and columns
representing communities in C. As each node is only as-
signed to one community, the rows of P are one-hot vectors
where Pij = 1 when node vi is assigned to community Cj .

Intuitively, the assignment of a node to a community is based
on the node and its role in the graph. We assume that node
embedding can capture this information. As a result, we
propose computing membership matrix P based on embed-
ding matrix E. To convert E ∈ Rn×m into P ∈ {0, 1}n×m,
we use the Gumbel-softmax with τ as the temperature hy-
perparameter. The Gumbel-softmax allows us to sample the
discrete matrix P from the continuous E while it is also dif-
ferentiable, which is important for learning the parameters
of fθ using backprop.

The membership matrix presents a property wherein by
right- and left-multiplying P and its transpose with the
adjacency matrix A of G respectively, we obtain a matrix
D = PTAP. Matrix D of size m×m can be considered
the adjacency matrix of the quotient graph where the nodes
are communities. Elements D(i, i) on the diagonal of D
capture the number of intra-edges in community Ci while
nondiagonal elements Di,j capture the number of cross-
edges between communities Ci and Cj . It is worth noting
that as matrix P is extremely sparse, the above equation can
be efficiently computed via sparse matrix multiplication.

Based on adjacency matrix D, the number of edge-cuts
between communities can be computed as follows:

Lc =

m∑
i 6=j

Dij (1)

Minimizing Lc in Equation 1 is equivalent to minimizing
the following loss function:

Lc = −Tr(PTAP) (2)
where Tr(X) is the trace of matrix X. Note that if we
replace A by the modularity matrix (Newman, 2006), Equa-
tion 2 then captures the modularity loss (Fortunato, 2010).

Mincut loss. While communities with a minimal edge-cut



Interpretable node embeddings with mincut loss

Figure 1. Interpretable node embeddings with mincut

can be identified by minimizing Equation 1, they are usu-
ally ill-formed, as some may contain only one node with a
small node degree. To have “meaningful” communities, tra-
ditional approaches enforce them to have the same number
of nodes (Nazi et al., 2019). In this paper, we propose mea-
suring community size by the number of edges. Although
this diverges from traditional definition, it leads to better
empirical results.

The edge-balance requirement is captured by the following
loss function:

Lb =

m∑
i=1

(Dii −
∑
jDjj

m
)2

Intuitively, we want the number of edges in community Ci
(which is D(i, i)) to be equal to the total number of edges
in all community divided by the number of communities.

By combining the above loss functions, we obtain the mincut
loss function:

L = λ

k∑
i 6=j

Dij + (1− λ)

m∑
i=1

(Dii −
∑
jDjj

m
)2

where λ is a control parameter that sets the weight for the
balance and edgecut loss.

4. Learning embeddings with mincut loss
In the following section, we discuss one application of the
mincut loss where it is used to learn node embeddings. With
the loss function chosen, the practitioner now only needs
to select the embedding function fθ. There are two main
types of embedding functions: shallow or deep. A shal-
low embedding function performs an embedding lookup on
the embedding matrix E while a deep embedding function
also takes into account the local neighborhood of a node.
However, a deep embedding function requires nodes to have
features and takes longer to train. In this paper, we focus
on a shallow embedding function, as we do not assume
the availability of node features. The architecture of our
framework is illustrated in Figure 1.

Interpretable embeddings. It is worth noting that it is pos-
sible to learn an embedding function fθ that creates node

embeddings of size d > m and to then apply linear trans-
formations to obtain matrix E′ ∈ Rn×m as an input to the
mincut loss. However, by feeding matrix E ∈ Rn×m to
the mincut loss directly, node embeddings exhibit a favor-
able property whereby an embedding value at the i-th index
represents the membership probability of the node in com-
munity Ci. In other words, dimensions of the embeddings
are interpretable, as they represent the communities.

Auxiliary loss. In practice, we also learn node embed-
dings with an auxiliary loss function that encodes the
intuition that a node and its neighbors are more likely
to be of the same community while non-neighbors be-
long to different communities. In particular, we also
minimize Ls =

∑
vi∈V (

∑
vj∈N(vi)

− log(Ei,:,Ej,:) +∑
vj∈V \N(vi)

log(Ei,:,Ej,:)) where N(v) denotes the
neighbors of v. In the experiments, we set the weight of the
auxiliary loss as very low (at 0.01) to clearly demonstrate
the benefits of the mincut loss.

5. Experiments
The aims of our experiments are to 1) evaluate the inter-
pretability of node embeddings and to 2) evaluate the per-
formance of node embeddings learned with the mincut loss
for node classification and link prediction.

5.1. Experimental setup

Datasets and Metrics. For node classification, we use
datasets for which node labels are available. After node
embeddings are learned, we train a classifier using 50% of
nodes while 50% are used for validation. For link prediction,
for each dataset, we remove a fraction of edges and construct
classifier to predict these missing edges. We select positive
and negative links similar to node2vec (Grover & Leskovec,
2016). Statistics for the datasets sre shown in Table 1. We
use the micro/macro F1-score for node classification and
AP and ROC for link prediction tasks.

Baselines. For the distance-based loss function, we
draw comparison with DeepWalk (Perozzi et al., 2014),
node2vec (Grover & Leskovec, 2016) which uses random
walks to measure the similarities between nodes. For
the community-based loss function, we apply the same



Interpretable node embeddings with mincut loss
Table 2. Node classification results

ppi wiki blogCatalog

mic-f1 mac-f1 mic-f1 mac-f1 mic-f1 mac-f1

deepwalk 0.203 0.177 0.688 0.580 0.37 0.251
node2vec 0.190 0.166 0.650 0.530 0.386 0.258

partition 0.185 0.151 0.599 0.454 0.252 0.131

modularity 0.201 0.159 0.612 0.482 0.283 0.127
mincut 0.207 0.175 0.650 0.512 0.321 0.175
modul. + aux. 0.221 0.200 0.676 0.561 0.393 0.272
mincut + aux. 0.224 0.207 0.667 0.549 0.400 0.271

learning node embedding process to a different loss func-
tion: 1) partition loss (Nazi et al., 2019), 2) modularity

Table 1. Datasets statistics
Dataset #Nodes #Edges

wiki 4,777 184’812
ppi 3,890 76,584
facebook 4,039 88,234
blogCatalog 10,312 333,983

loss (Girvan & New-
man, 2002), and 3) our
mincut loss. We also
consider two variants
of modularity loss and
mincut loss where we
also use the auxiliary loss with a weight of 0.01.

5.2. Node classification results

Table 2 compares the results of community-based loss func-
tions to those of traditional distance-based loss functions.
We observe that techniques using community-based losses
(except in the case of GAP) achieve comparable or stronger
performance than distance-based approaches. For example,
our proposed mincut loss outperforms node2vec by 24.6%
for the PPI dataset for both micro and micro-f1 scores. Al-
though the f1-scores of community-based losses are lower
than those of distance-based loss in the wiki dataset, this
could reflect a tradeoff in the interpretability of our node
embeddings. For community-based losses, our approach
outperforms the modularity loss and partition loss across all
datasets and metrics. We also find that adding the auxiliary
loss helps increase the f1-score by at most 8%, denoting a
superior community structure.

5.3. Link prediction results

For the link prediction task, we find that our mincut loss with
additional auxiliary loss outperforms the other approaches.
This result is expected as our mincut loss is designed to
form communities with a large number of edges. With-
out the auxiliary loss, the mincut loss still outperforms all
community-based losses. For example, the mincut loss
provides gains of 19.6% and 10% over the partition and
modularity loss respectively. On the other hand, the mincut
loss without auxiliary loss differs from that of DeepWalk by
only 0.002 while it still outperforms node2vec.

Table 3. Link prediction results
facebook ppi

ROC AP ROC AP

deepwalk 0.963 0.945 0.557 0.541
node2vec 0.942 0.912 0.536 0.540

partition 0.803 0.783 0.507 0.491

modularity 0.876 0.799 0.467 0.477
mincut 0.961 0.935 0.507 0.491
modul. + aux. 0.984 0.982 0.771 0.810
mincut + aux. 0.984 0.987 0.774 0.823

5.4. Interpretability

To analyze the interpretability of our embeddings, we con-
struct a word adjacency graph of 5000 words from the Text8
corpus (Mahoney, 2011). The edge between two words
is weighted by their Positive Pointwise Mutual Informa-
tion (Yin & Shen, 2018). We then use the mincut loss to
learn the node(word) embeddings of size 128. We report the
top words with the largest embedding values (in parentheses)
along a dimension in Table 4.

Table 4. Top words of each dimension relating to a specific topic
Dim #1 Dim #3 Dim #9

trial (1.54) luther (1.56) miles (1.47)
murder (1.52) practices (1.55) paved (1.43)
judge (1.51) protestant (1.55) km (1.41)
copyright (1.51) churches (1.55) total (1.33)
guilty (1.5) muslims (1.54) main (1.3)
crimes (1.5) catholic (1.54) its (0.6)
relating (1.49) muhammad (1.54) including (0.38)

We observe that for the top words in each dimension, we can
infer the meaning behind each dimension. For instance, the
1st dimension is related to the judicial system while the 3rd
dimension focuses on religion. In addition, for the 9th di-
mension, we find that words related to the topic captured by
the dimension have high unnormalized probabilities while
unrelated words have low probabilities. There is a large
gap between them (e.g. between the word “main” and the
word “its”). This clearly shows that both the embedding
dimensions and embedding values are meaningful.

6. Conclusion
We introduced a new loss function for embedding learning
in an unsupervised manner. The embeddings learned using
our proposed mincut loss still perform well in several down-
stream tasks such as link prediction and node classification.
In addition, the embeddings are highly interpretable as the
dimensions are meaningful, which is extremely useful in
explaining models that use these embeddings.

An interesting direction for future work is to understand
the connection between number of communities and em-
bedding dimensionality. Another is to apply mincut loss
to applications such as image segmentation or hierarchical
community detection.



Interpretable node embeddings with mincut loss

References
Fortunato, S. Community detection in graphs. Physics

reports, 486(3-5):75–174, 2010.

Girvan, M. and Newman, M. E. Community structure in so-
cial and biological networks. Proceedings of the national
academy of sciences, 99(12):7821–7826, 2002.

Goyal, P. and Ferrara, E. Graph embedding techniques,
applications, and performance: A survey. Knowledge-
Based Systems, 151:78–94, 2018.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864. ACM, 2016.

Hamilton, W. L., Ying, R., and Leskovec, J. Representation
learning on graphs: Methods and applications. IEEE
Data Engineering Bulletin, 2017.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

Mahoney, M. Large text compression benchmark. URL:
http://www. mattmahoney. net/text/text. html, 2011.

Nazi, A., Hang, W., Goldie, A., Ravi, S., and Mirhoseini,
A. Gap: Generalizable approximate graph partitioning
framework. arXiv preprint arXiv:1903.00614, 2019.

Newman, M. E. Modularity and community structure in net-
works. Proceedings of the national academy of sciences,
103(23):8577–8582, 2006.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 701–710. ACM,
2014.

Yin, Z. and Shen, Y. On the dimensionality of word em-
bedding. In Advances in Neural Information Processing
Systems, pp. 887–898, 2018.


