
End-to-end learning and optimization on graphs

Bryan Wilder 1 Eric Ewing 2 Bistra Dilkina 2 Milind Tambe 1

Abstract
Real-world applications often combine learning
and optimization problems on graphs. For in-
stance, our objective may be to cluster the graph
in order to detect meaningful communities (or
solve other common graph optimization problems
such as maxcut, vertex cover, and so on). How-
ever, graphs or related attributes are often only
partially observed, introducing learning problems
such as link prediction which must be solved prior
to optimization. We propose an approach to in-
tegrate a differentiable proxy for common graph
optimization problems into training of machine
learning models for tasks such as link prediction.
This allows the model to focus specifically on the
downstream task that its predictions will be used
for. Experimental results show that our end-to-end
system obtains better performance on example op-
timization tasks than can be obtained by combin-
ing state of the art link prediction methods with
expert-designed graph optimization algorithms.

We encourage readers to view the final ver-
sion of the paper at https://arxiv.org/
abs/1905.13732, which contains signifi-
cant changes.

1. Introduction
Graph optimization problems are ubiquitous across domains.
For instance, many applications require clustering a graph
into well-connected subgraphs; such techniques have been
used to discover communities in social networks, mine
knowledge graphs, and a variety of other tasks (Ahn et al.,
2010). Other classic examples include maxcut (applied to
computational biology (Snir & Rao, 2006) and circuit de-
sign (Barahona et al., 1988)), vertex cover, and so on. While
there is a great deal of work on such tasks, complete applica-

1School of Engineering and Applied Sciences, Harvard
University 2Department of Computer Science, University of
Southern California. Correspondence to: Bryan Wilder
<bwilder@g.harvard.edu>.

Presented at the ICML 2019 Workshop on Learning and Reasoning
with Graph-Structured Data Copyright 2019 by the author(s).

tions must also solve difficult machine learning challenges.
For instance, the input graph is usually incomplete: some
edges may be unobserved, or nodes may have attributes
that are only partially known. Recent work has introduced
sophisticated methods for tasks such as link prediction and
semi-supervised classification (Perozzi et al., 2014; Kipf &
Welling, 2017; Schlichtkrull et al., 2018; Hamilton et al.,
2017; Zhang & Chen, 2018), but these methods are devel-
oped in isolation of downstream optimization tasks.

Most current solutions use a two-stage approach which first
trains a model using a standard loss, and then plugs the
model’s predictions into an optimization algorithm. How-
ever, predictions which minimize a standard loss function
(e.g., cross-entropy) may be suboptimal for specific opti-
mization tasks, especially in complex and noisy settings
where even the best model is imperfect. Here, we develop
methods which integrate graph learning and optimization,
enabling end-to-end training. Our key technical contribution
is a differentiable surrogate for common graph optimization
problems that can then be combined end-to-end with dif-
ferentiable learning models. This is nontrivial because the
underlying problems are highly combinatorial, lacking well-
defined gradients. A large body of work aims to replace
combinatorial algorithms by purely using neural networks
(Vinyals et al., 2015; Kool & Welling, 2018). While such
systems can be trained to perform well on specific data dis-
tributions, they must discover algorithmic concepts entirely
from scratch. We propose an approach that gets the best
of both worlds by incorporating algorithmic structure as a
differentiable layer in the overall system, which can then be
fine-tuned by training parameters of the learned component.

We propose a specific form of algorithmic structure based on
including a differentiable version of a clustering algorithm
as a layer in the neural network. Clustering is motivated by
the observation that state of the art deep learning models
for graphs work by embedding the nodes of the graph into a
continuous space. This suggests that we can approximate
optimization over the discrete graph with an optimization
problem in the continuous embedding space. This provides
explicit algorithmic structure to the learned system: instead
of having to learn the concept of grouping similar entities
from scratch, the system simply must adjust the learned rep-
resentations so that nodes which are clustered together via

https://arxiv.org/abs/1905.13732
https://arxiv.org/abs/1905.13732

End-to-end learning and optimization on graphs

their embeddings also, e.g., belong to the same communities
of the graph (for the community detection domain).

In short, we make three contributions. First, we introduce
a general framework for integrating graph learning and op-
timization by differentiable optimization in the continuous
space as a proxy for the discrete problem. Second, we give
a means of differentiating through the clustering procedure,
allowing it to be used as a building block in deep learning
systems. Third, we show experimentally that our approach
improves over both two-stage baselines and approaches that
do not include explicit algorithmic structure on a range of
example datasets and optimization problems.

2. Setting
We consider settings that combine learning and optimiza-
tion. The input is a graph G = (V,E), which is in some
way partially observed. We will formalize our problem in
terms of link prediction as an example, but our framework
applies to other common graph learning problems (e.g.,
semi-supervised classification). In link prediction, the graph
is not entirely known; instead, we observe only training
edges Etrain ⊂ E. Let A denote the adjacency matrix of
the graph and Atrain denote the adjacency matrix with only
the training edges. The learning task is to predict A from
Atrain. In domains we consider, the motivation for perform-
ing link prediction, is to solve a decision problem for which
the objective depends on the full graph. Specifically, we
have a decision variable x, objective function f(x,A), and
a feasible set X . We aim to solve the optimization problem

max
x∈X

f(x,A). (1)

However, A is unobserved. The most common approach
is to train a model to reconstruct A from Atrain using a
standard loss function (e.g., cross-entropy), producing an
estimate Â. The two-stage approach plugs Â into an opti-
mization algorithm for Problem 1, maximizing f(x, Â).

We propose end-to-end models which map from Atrain di-
rectly to a feasible decision x. The model will be trained
to maximize f(x,Atrain), i.e., the quality of its decision
evaluated on the training data (instead of a loss `(Â, Atrain)
that measures purely predictive accuracy). One approach is
to “learn away” the problem by training a standard model
(e.g., a GCN) to map directly from Atrain to x. However,

this forces the model to entirely rediscover algorithmic con-
cepts, while two-stage methods are able to exploit highly
sophisticated, hand-tuned methods for optimization. We
propose an alternative that embeds algorithmic structure
into the learned model, getting the best of both worlds.

3. Approach: ClusterNet
Our proposed approach merges two differentiable compo-
nents into a system that is trained end-to-end. First, a graph
embedding layer which uses Atrain and any node features
to embed the nodes of the graph into Rp. In our experi-
ments, we use GCNs (Kipf & Welling, 2017). Second, a
layer that performs differentiable optimization. This layer
takes the continuous-space embeddings as input and uses
them to produce a solution x to the graph optimization prob-
lem. Specifically, we propose to use a layer the implements
a differentiable version of K-means clustering. This layer
produces a soft assignment of the nodes to clusters, along
with the cluster centers in embedding space. We remark that
some recent work has trained deep representations together
with a set of cluster centers (Xie et al., 2016; Yang et al.,
2016); however, none of this work introduces an explicit
clustering layer that can be incorporated into larger systems.

The intuition is that cluster assignments can be interpreted as
the solution to many common graph optimization problems.
For instance, in community detection we can interpret the
cluster assignments as assigning the nodes to communities.
Or, in maxcut, we can use two clusters to assign nodes to
either side of the cut. Another example is maximum cover-
age and related problems, where we attempt to select a set
of K nodes which cover (are neighbors to) as many other
nodes as possible. This problem can be approximated by
clustering the nodes intoK components and choosing nodes
whose embedding is close to the center of each cluster. We
do not claim that any of these problems is exactly reducible
to K-means. Rather, the idea is that including K-means as
a layer in the network provides a useful inductive bias. This
algorithmic structure can be fine-tuned to specific problems
by training the first component, which produces the embed-
dings, so that the learned representations induce clusterings
with high objective value for the underlying task.

End-to-end learning and optimization on graphs

3.1. Forward pass

Let xj denote the embedding of node j and µk denote the
center of cluster k. rjk denotes the degree to which node
j is assigned to cluster k. In traditional K-means, this
is a binary quantity, but we will relax it to a fractional
value such that

∑
k rjk = 1 for all j. Specifically, we take

rjk =
exp(−β||xj−µk||)∑
` exp(−β||xj−µ`||) , which is a soft-min assignment

of each point to the cluster centers based on distance. Here,
β is a temperature hyperparameter; taking β →∞ recovers
the standard k-means assignment. We can optimize the
cluster centers via an iterative process analogous to the
typical k-means updates by alternately setting

µk =

∑
j rjkxj∑
j rjk

∀k = 1...K (2)

rjk =
exp(−β||xj − µk||)∑
` exp(−β||xj − µ`||)

∀k = 1...K, j = 1...n.

These iterates converge to a fixed point where µ remains the
same between successive updates (MacKay, 2003).

3.2. Backward pass

We will use the implicit function theorem to analytically
differentiate through the fixed point that the forward pass
iterates converge to, obtaining expressions for ∂µ

∂x and ∂r
∂x .

This in turn allows us to backpropgate gradients from the
loss function to the component that produced the embed-
dings x. Define a function f : RKp → R as

fi,`(µ, x) = µ`i −
∑
j rjkxj∑
j rjk

(3)

Now, (µ, x) are a fixed point of the iterates if f(µ, x) = 0.
Applying the implicit function theorem yields that

∂µ

∂x
= −

[
∂f(µ, x)

∂µ

]−1
∂f(µ, x)

∂x
. (4)

Note that after obtaining ∂µ
∂x , we can calculate ∂r

∂x as

∂r(µ, x)

∂x
=
∂r(µ, x)

∂µ

∂µ

∂x
+
∂r(µ, x)

∂x
.

3.2.1. EXACT BACKWARD PASS

We now turn to calculating ∂µ
∂x . Define Ri =

∑n
j=1 rji and

Ci =
∑n
j=1 rjixj . We will work with Ci ∈ Rp×1 as a

column vector. For a fixed i, j, we have

∂fi,·
∂xj

= −
Rixj

[
∂rji
∂xj

]>
− Ci

[
∂rji
∂xj

]>
R2
i

− rji
Ri
I

where I denotes the p-dimensional identity matrix. Simi-
larly, fixing i, k gives

∂fi,·
∂µk

= δikI −
Ri
∑n
j=1 xj

[
∂rji
∂µk

]>
− Ci

[∑n
j=1

∂rji
∂µk

]>
R2
i

where δik is the indicator function. Now, one option to
obtain ∂µ

∂x is to explicitly calculate the above expressions
(across all i, j, k) and then evaluate Equation 4. This can
be done either explicitly, or by using iterative methods to
compute the backward pass vector without explicitly invert-
ing ∂f

∂µ . In either case, though, the procedure is potentially

costly in computational terms: ∂fi
∂µk

takes O(np) time to

compute, for O(K2np) time overall to obtain ∂f
∂µ . Then,

inverting or factoring ∂f
∂µ will likely require O(K3p3) time,

since it is a matrix of size (Kp) × (Kp). While the ex-
act backward pass may be feasible for some problems, it
quickly becomes burdensome for large instances. We now
propose a fast approximation to the exact backward pass.

3.2.2. APPROXIMATE BACKWARD PASS

We start from the observation that ∂f∂µ will often be domi-
nated by its diagonal terms (the identity matrix). The off-
diagonal entries capture the extent to which updates to one
entry of µ indirectly impact other entries via changes to
the cluster assignments r. However, when the cluster as-
signments are relatively firm, r will not be highly sensi-
tive to small changes to the cluster centers. Substantial
off-diagonal entries of ∂f

∂µ reflect cases where r is suffi-
ciently sensitive that changes to one cluster center cause
large enough changes to the overall cluster assignments that
the centers of other clusters themselves move. We find this
case to be relatively rare empirically, especially since the op-
timal choice of the parameter β (which controls the hardness
of the cluster assignments) is typically fairly high. Under
these conditions, we can approximate ∂f

∂µ by its diagonal,
∂f
∂µ ≈ I . This in turn gives ∂µ

∂x ≈ −
∂f
∂x .

We now show that this approximate gradient can be cal-
culated by unrolling a single iteration of the forward-pass
updates from Equation 2 at convergence. Examining the
definition of f(µ, x) in Equation 3, we see that the first term
(µ`i) is in fact constant with respect to x, since here µ a fixed
value input to f . Hence,

−∂fk
∂x

=
∂

∂x

∑
j rjkxj∑
j rjk

which is just the update equation for µk. Since the forward-
pass updates are written entirely in terms of differentiable
functions, we can automatically compute the approximate
backward pass with respect to x (i.e., compute products with
our approximations to ∂µ

∂x and ∂r
∂x) by applying standard

End-to-end learning and optimization on graphs

Table 1. Objective value of each method on the full graph.
Community detection Maxcut

cora citeseer pubmed cora citeseer pubmed

ClusterNet 0.574 0.617 0.629 6631 6188 54181
GCN-2stage 0.268 0.324 - 5218 3462 -

GCN-e2e 0.090 0.221 0.011 2812 273 1538

autodifferentiation tools to the final update of the forward
pass. Compared to computing the exact analytical gradients,
this avoids the need to explicitly reason about or invert ∂f∂µ .

Compared to differentiating by unrolling the entire sequence
of updates in the computational graph (as has been sug-
gested for other problems (Domke, 2012; Andrychowicz
et al., 2016; Zheng et al., 2015)), our approach has two
key advantages. First, it avoids storing the entire history
of updates and backpropagating through all of them. The
runtime for our approximation is independent of the number
of updates needed to reach convergence. Second, we can
in fact use entirely non-differentiable operations to arrive
at the fixed point, e.g., heuristics for the K-means prob-
lem, stochastic methods which only examine subsets of the
data, etc. This allows the forward pass to scale to larger
datasets since we can use the best algorithmic tools avail-
able, not just those that can be explicitly encoded in the
autodifferentiation tool’s computational graph.

4. Experimental results
We now show experiments on domains that combine link
prediction with two example optimization problems.

Learning problem: In link prediction, we observe a partial
graph and aim to infer which unobserved edges are present.
In each of the experiments, we hold out 50% of the edges
in the graph (uniformly at random) as the unobserved test
edges. The remaining edges are split into 40% training and
10% validation. The learning task is to use the training edges
to predict whether the test edges are present, after which we
will solve an optimization problem on the predicted graph.
The objective is to find a solution with high objective value
measured on the entire graph, not just the training edges.

Optimization problems: We consider two example opti-
mization tasks. First, community detection aims to partition
the nodes of the graph into K distinct subgroups which are
dense internally, but with few edges across groups. For-
mally, the objective is to find a partition maximizing the
modularity (Newman, 2006b), defined as

1

2m

∑
u,v∈V

K∑
k=1

[
Auv −

dudv
2m

]
rukrvk (5)

where dv is the degree of node v, and rvk is 1 if node v is
assigned to community k and zero otherwise. This measures

the number of edges within communities compared to the
number which would be expected if edges where placed
randomly. To model this problem in our framework, our
clustering module contains a cluster for each of the K com-
munities, and we can directly interpret the r that it outputs
as a soft assignment of nodes to communities. Defining B
to be the modularity matrix with entriesBuv = Auv− dudv

2m ,
our training objective is 1

2mTr
[
r>Btrainr

]
, which is the

expected number of training edges that fall within com-
munities when each node j is assigned independently to a
community with probabilities given by rj .

Second, maxcut is a classic graph optimization problem
which attempts to find a cut (a partition of the nodes into
two groups) which maximizes the number of edges crossing
between sides of the cut. Here, our clustering module has
two clusters (representing the sides of the cut) and we in-
terpret r as soft assignments to the two sides. The training
objective is

∣∣∣∣(1− rr>)�Atrain∣∣∣∣
1
, where || · ||1 denotes

summing the elements of the matrix. This is the expected
number of edges cut when each node j is assigned indepen-
dently to one side with probabilities given by rj .

Algorithms: We instantiate our approach using a 2-layer
GCN to produce the node embeddings, followed by a clus-
tering layer. We compare to two baselines. First, GCN-
2stage, the two stage approach which first trains a model
for link prediction, and then inputs the predicted graph into
an optimization algorithm. For link prediction, we use the
GCN-based system of (Schlichtkrull et al., 2018) (we also
adopt their training procedure, including negative sampling
and edge dropout). For the optimization algorithms, we use
standard approaches for each domain. Specifically, for com-
munity detection we use the spectral approach of (Newman,
2006a), while for maxcut we use local search (a well-known
approximation algorithm (Kleinberg & Tardos, 2006)). Sec-
ond, GCN-e2e, an end-to-end approach which does not
include explicit algorithm structure. We train a GCN-based
network to directly predict the rj (i.e., the nodes’ commu-
nity or cut assignments), using the same training objectives
as our own model. The number of layers in the GCN was
chosen using the validation set; empirically, we observed
the best performance with 4 layers. This baseline allows us
to isolate the benefits of including algorithmic structure.

Results: We show results on three standard graph datasets:
cora, citeseer and pubmed. Table 1 shows the objective value

End-to-end learning and optimization on graphs

that each method achieves for each of the optimization tasks
on each graph. We note that the two-stage baseline could not
be run on the pubmed dataset since it required predicting a
dense n×nmatrix which did not fit in memory. We find that
ClusterNet substantially improves on both baselines across
all settings, demonstrating the advantage to of end-to-end
training which incorporates algorithmic structure.

References
Ahn, Y., Bagrow, J., and Lehmann, S. Link communities

reveal multiscale complexity in networks. Nature, 466
(7307):761, 2010.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N.
Learning to learn by gradient descent by gradient descent.
In Advances in Neural Information Processing Systems,
pp. 3981–3989, 2016.

Barahona, F., Grötschel, M., Jünger, M., and Reinelt, G. An
application of combinatorial optimization to statistical
physics and circuit layout design. Operations Research,
36(3):493–513, 1988.

Domke, J. Generic methods for optimization-based model-
ing. In Artificial Intelligence and Statistics, pp. 318–326,
2012.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NIPS, 2017.

Kipf, T. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kleinberg, J. and Tardos, E. Algorithm design. Pearson
Education India, 2006.

Kool, W. and Welling, M. Attention solves your TSP. arXiv
preprint arXiv:1803.08475, 2018.

MacKay, D. J. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

Newman, M. E. Finding community structure in networks
using the eigenvectors of matrices. Physical review E, 74
(3):036104, 2006a.

Newman, M. E. Modularity and community structure in net-
works. Proceedings of the National Academy of Sciences,
103(23):8577–8582, 2006b.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 701–710. ACM,
2014.

Schlichtkrull, M., Kipf, T., Bloem, P., Van Den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In European Semantic
Web Conference, 2018.

Snir, S. and Rao, S. Using max cut to enhance rooted trees
consistency. IEEE/ACM transactions on computational
biology and bioinformatics, 3(4):323–333, 2006.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In NIPS, 2015.

Xie, J., Girshick, R., and Farhadi, A. Unsupervised deep
embedding for clustering analysis. In International con-
ference on machine learning, pp. 478–487, 2016.

Yang, L., Cao, X., He, D., Wang, C., Wang, X., and Zhang,
W. Modularity based community detection with deep
learning. In IJCAI, volume 16, pp. 2252–2258, 2016.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. In NIPS, 2018.

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V.,
Su, Z., Du, D., Huang, C., and Torr, P. H. Conditional
random fields as recurrent neural networks. In Proceed-
ings of the IEEE international conference on computer
vision, pp. 1529–1537, 2015.

