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Abstract
Graph convolutional neural networks (GCNN)
have numerous applications in different graph
based learning tasks. Although the techniques
obtain impressive results, they often fall short in
accounting for the uncertainty associated with the
underlying graph structure. In the recently pro-
posed Bayesian GCNN (BGCN) framework, this
issue is tackled by viewing the observed graph as
a sample from a parametric random graph model
and targeting joint inference of the graph and
the GCNN weights. In this paper, we introduce
an alternative generative model for graphs based
on copying nodes and incorporate it within the
BGCN framework. Our approach has the bene-
fit that it uses information provided by the node
features and training labels in the graph topology
inference. Experiments show that the proposed
algorithm compares favourably to the state-of-the-
art in benchmark node classification tasks.

1. Introduction
Recently, there has been an increased research focus on
graph convolutional neural networks (GCNNs) due to their
successful application in various graph based learning prob-
lems such as node and graph classification, matrix comple-
tion, and learning of node embeddings. Prior work leading
to the development of GCNNs includes (Bruna et al., 2013;
Henaff et al., 2015; Duvenaud et al., 2015). (Defferrard
et al., 2016) propose an approach based on spectral filtering
which is also followed in (Levie et al., 2019; Chen et al.,
2018a; Kipf & Welling, 2017). Other works (Atwood &
Towsley, 2016; Hamilton et al., 2017) consider spatial fil-
tering and aggregation strategies. A general framework for
learning on graphs and manifolds with neural networks is
derived in (Monti et al., 2017) and this includes various
other existing methods as special cases.

Several modifications can improve the performance of the
GCNN, including adding attention nodes (Veličković et al.,
2018), gates (Li et al., 2016c; Bresson & Laurent, 2017),
edge conditioning and skip connections (Sukhbaatar et al.,
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2016; Simonovsky & Komodakis, 2017). Other approaches
involve the use of graph ensembles (Anirudh & Thiagara-
jan, 2017), multiple adjacency matrices (Such et al., 2017),
the dual graph (Monti et al., 2018), or random perturba-
tion (Sun et al., 2019). Employing localized sampling meth-
ods (Hamilton et al., 2017), importance sampling (Chen
et al., 2018a) or control variate based stochastic approxi-
mation (Chen et al., 2018b) has been shown to improve the
scalability of these methods for processing large graphs.

The majority of the existing approaches process the graph
as the ground truth. However, in many practical settings,
the graph is often derived from noisy data or inaccurate
modelling assumptions. As a result, spurious edges may
be present or edges between very similar nodes might be
omitted. This can lead to deterioration in the performance
of the learning algorithms. Various existing approaches like
the graph attention network (Veličković et al., 2018) and
graph ensemble based approach (Anirudh & Thiagarajan,
2017) address this issue partially. Nevertheless, neither of
these methods has the flexibility to add edges that could
be missing from the observed graph. A principled way to
address the uncertainty in the graph structure is to consider
the graph as a random sample drawn from a probability dis-
tribution over graphs. The Bayesian framework of (Zhang
et al., 2019) proposes to use a parametric random graph
model as the generative model of the graph and formulates
the learning task as the inference of the joint posterior distri-
bution of the graph and the weights of the GCNN. Despite
the effectiveness of the approach, the choice of a suitable
random graph model is crucial and heavily dependent on
the learning task and datasets. Furthermore, the method in
(Zhang et al., 2019) conducts the posterior inference of the
graph solely conditioned on the observed graph topology.
This results in a complete disregard of any information pro-
vided by the node features and the training labels, which is
undesirable if these data are highly correlated with the true
graph structure.

In this paper, we introduce a novel generative model for
graphs based on copying nodes from one location to another.
While this idea is similar to the full duplication process
presented in (Chung et al., 2003), we do not grow the graph
since we only copy existing nodes rather than adding new
ones. This results in a formulation in which the posterior
inference of the graph is carried out conditioned on the
features and training labels as well as the observed graph
topology. Experimental results demonstrate the efficacy of
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our approach for the semi-supervised node classification
task, particularly if a limited number of training labels is
available. The rest of the paper is organized as follows.
We provide a brief review of the GCNN in Section 2 and
present the proposed approach in Section 3. We report the
results of the numerical experiments in Section 4 and make
concluding remarks in Section 5.

2. Graph convolutional neural networks
Although graph convolutional neural networks are suitable
for a variety of learning tasks, here we restrict ourselves to
the discussion of the node classification problem on a graph
for brevity. In this setting, an observed graph Gobs = (V, E)
is available, where V is the set ofN nodes and E ⊆ V×V de-
notes the set of edges. There is a feature vector xi ∈ Rd×1

associated with each node i and its class label is denoted by
yi. The labels are known only for the nodes in the training
set L ⊂ V . The goal is to predict the labels of the remaining
nodes using the information provided by the observed graph
Gobs, the feature matrix X = [x1,x2, . . . ,xN ]T and the
training labels YL = {yi : i ∈ L}.

In a GCNN, learning is performed using graph convolution
operations within a neural network architecture. A layerwise
propagation rule for the simpler architectures (Defferrard
et al., 2016; Kipf & Welling, 2017) is written as:

H(1) = σ(ÂGXW(0)) , (1)

H(l+1) = σ(ÂGH
(l)W(l)) . (2)

The normalized adjacency operator ÂG is derived from the
observed graph and it controls the aggregation of the out-
put features across the neighbouring nodes at each layer.
σ denotes a pointwise non-linear activation function and
H(l) are the output features from layer l − 1. W(l) repre-
sents the weights of the neural network at layer l. We use
W = {Wl}Ll=1 to denote the collection of GCNN weights
across all layers. In an L-layer network, the final output is
collected from the last layer Z = H(L). The weights of the
neural network W are learned via backpropagation with the
objective of minimizing an error metric between the training
labels YL and the network predictions ZL = {zi : i ∈ L}
at the nodes in the training set.

3. Methodology
In the Bayesian paradigm, the observed graph is viewed
as a random quantity and the posterior inference for the
underlying graph is required. We postulate a model which
allows sampling of a random graph by copying the observed
graph and then replacing each node’s edges with a high
probability by the edges of a similar node randomly selected
from the observed graph, while the node features remain
unchanged.

3.1. Node-Copying Graph Model
In order to sample graph G from the proposed model, we
introduce an auxiliary random vector ζ ∈ {1, 2, ...N}N ,
where the j’th entry ζj denotes the node whose edges are
to replace the edges of the j’th node in the observed graph.
The entries in ζ are assumed to be mutually independent.
For sampling the ζjs, we use a base classification algorithm
using the observed graph Gobs, the features X and the train-
ing labels YL to obtain labels ĉ` ∈ {1, 2, ...K} for each
node ` in the graph. Then for each class 1 ≤ k ≤ K, we
collect the nodes with predicted label k into the set Ck:

Ck = {` | 1 ≤ ` ≤ N, ĉ` = k} . (3)

We define the posterior distribution of ζ as follows:

p(ζ|Gobs,X,YL) =
N∏
j=1

p(ζj |Gobs,X,YL) ,

p(ζj = m|Gobs,X,YL) =


1

|Ck|
, if ĉj = ĉm = k

0, otherwise ,
(4)

for 1 ≤ j,m ≤ N and 1 ≤ k ≤ K. Sampling ζj from this
model boils down to selecting a node at random from the
collection of nodes that have the same predictive label as
the j’th node. Conditioned on ζ and the observed graph
Gobs, the sampling of graph G is carried out by copying
the ζj’th node of Gobs in the place of the j’th node of G,
independently for all 1 ≤ j ≤ N with a high probability.
More formally, the generative model is given as:

p(G|Gobs, ζ) =
N∏
j=1

ε
1{Gj=Gobs,j}(1− ε)1{Gj=G

obs,ζj
}
, (5)

where, 0 < ε� 1 is a hyperparameter and 1{Gj=Gobs,q} de-
notes the indicator function of copying q’th node of Gobs in
place of the j’th node of G. The copying operation involves
changing the set of neighbours of the j’th node of G to be
the same as the set of neighbours of the q’th node of Gobs.

3.2. Bayesian Graph Convolutional Neural Networks
As in (Zhang et al., 2017), we compute the marginal poste-
rior probability of the node labels via marginalization with
respect to the graph and the GCNN weights.

p(Z|YL,X,Gobs) =
∫
p(Z|W,Gobs,X)p(W|YL,X,G)

p(G|Gobs, ζ)p(ζ|Gobs,YL,X) dW dG dζ . (6)

Here W denotes the random weights of a Bayesian GCNN
over the graph G and ζ is an N -dimensional random vec-
tor associated with the proposed node copying model. In
a node classification problem with K classes, the term
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Algorithm 1 Bayesian GCN with node copying

1: Input: Gobs, X, YL
2: Output: p(Z|YL,X,Gobs)
3: Initialization: train a base classifier to obtain ĉ` for

1 ≤ ` ≤ N , form Ck using eq. (3) for 1 ≤ k ≤ K.
4: for v = 1 to V do
5: Sample ζv ∼ p(ζ|Gobs,X,YL) using eq. (4).
6: for i = 1 to NG do
7: Sample graph Gi,v ∼ p(G|Gobs, ζv) using eq. (5).
8: for s = 1 to S do
9: Sample weights Ws,i,v using MC dropout by

training a GCNN over the graph Gi,v .
10: end for
11: end for
12: end for
13: Approximate p(Z|YL,X,Gobs) using eq. (7).

p(Z|YL,X,Gobs) is modelled using a K-dimensional cate-
gorical distribution by applying a softmax function to the
output of the GCNN. In (Zhang et al., 2019), Gobs is viewed
as a sample realization from a collection of graphs associ-
ated with a parametric random graph model and posterior
inference of p(G|Gobs) is targeted via marginalization of
the random graph parameters. Their approach thus ignores
any possible dependence of the graph G on the features
X and the labels YL. By contrast, our approach mod-
els the marginal posterior distribution of the graph G as
p(G|Gobs,X,YL). This allows us to incorporate the infor-
mation provided by the features X and the training labels
YL in the graph inference process. The integral in equa-
tion (6) is not analytically tractable. Hence, a Monte Carlo
approximation is formed as follows:

p(Z|YL,X,Gobs) ≈

1

V

V∑
v=1

1

NGS

NG∑
i=1

S∑
s=1

p(Z|Ws,i,v,Gobs,X) . (7)

In this approximation, V samples ζv are drawn from
p(ζ|Gobs,YL,X). The NG graphs Gi,v are sampled from
p(G|Gobs, ζv) and subsequently S weight matrices Ws,i,v

are sampled from p(W|YL,X,Gi,v) from the Bayesian
GCN corresponding to the graph Gi,v .

Sampling graphs from the node-copying model in Sec-
tion 3.1 has several advantages compared to the graph in-
ference technique based on mixed membership stochastic
block models (MMSBMs) (Airoldi et al., 2009), which was
adopted in (Zhang et al., 2019). First, the sampling of ζ is
computationally much cheaper than the inference of param-
eters of the parametric model, which becomes more severe
as the size of the graph increases. Second, it is in general
extremely difficult to carry out accurate inference for high
dimensional MMSBM parameters (Li et al., 2016b) and

inaccuracies in parameter estimates results in sampling of
graphs which are very different from the observed graph.
This can impact classification performance adversely, par-
ticularly if the observed graph does not fit the MMSBM
well. However, for the proposed copying model, the simi-
larity between the sampled graph and the observed graph
depends mostly on the performance of the base classifier.
If a state-of-the-art graph based classification method (e.g.,
GCNN) is used, we can obtain more representative graph
samples from this model, particularly for large graphs. The
expected graph edit distance between the random graphs
and the observed graph can be controlled by the choice of
the parameter ε. A low value of ε is chosen since it causes
high variability among the random graph samples which was
found to be effective empirically. Third, sampling a graph
from the MMSBM scales as O(N2) whereas the proposed
method offers O(N) complexity.

For the Bayesian inference of GCNN weights, we can
use various techniques including expectation propaga-
tion (Hernández-Lobato & Adams, 2015), variational infer-
ence (Gal & Ghahramani, 2016; Sun et al., 2017; Louizos
& Welling, 2017), and Markov Chain Monte Carlo meth-
ods (Neal, 1993; Korattikara et al., 2015; Li et al., 2016a).
Similar to (Zhang et al., 2019), we train a GCNN on Gi,v and
use Monte Carlo dropout (Gal & Ghahramani, 2016) to sam-
ple Ws,i,v . This is equivalent to sampling the weights from
a variational approximation of p(W|YL,X,Gi,v), with a
particular structure. The resulting algorithm is summarized
in Algorithm 1.

4. Numerical Experiments and Results
We address a semi-supervised node classification task for
three citation networks (Sen et al., 2008): Cora, CiteSeer,
and Pubmed. In these datasets each node represents a scien-
tific publication and an undirected edge is formed between
two nodes if any one of them cites the other. Each node has
a sparse bag-of-words feature vector and the label describes
the topic of the document. During training, we have access
to the labels of only a few nodes per class and the goal is to
infer labels for the other nodes.

We consider two different strategies for splitting the data
into training and test sets, as specified in (Zhang et al., 2019).
In the first setting, we use the fixed split from (Yang et al.,
2016), which contains 20 labels per class in the training set.
For the cases with 5 and 10 training labels per class in the
fixed split scenario, the first 5 and 10 labels in the original
partition of (Yang et al., 2016) are used. The second type
of split is constructed by sampling the training and test sets
randomly for each trial. Since a specific split of data can
impact the classification performance significantly, random
splitting provides a more robust comparison of performance
of the algorithms.
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We compare the proposed BGCN in this paper with
ChebyNet (Defferrard et al., 2016), GCNN (Kipf & Welling,
2017), GAT (Veličković et al., 2018) and the BGCN
in (Zhang et al., 2019). The hyperparameters of GCNN
are set according to (Kipf & Welling, 2017) and the same
values are used for the BGCN algorithms as well. For the
proposed BGCN, we use GCNN (Kipf & Welling, 2017)
as the base classification method. For both splitting strate-
gies, each algorithm is run for 50 trials with random weight
initializations. The average accuracies for Cora, Citeseer
and Pubmed datasets along with their standard errors are
reported in Table 1, 2 and 3 respectively.

Random split 5 labels 10 labels 20 labels

ChebyNet 61.7±6.8 72.5±3.4 78.8±1.6
GCNN 70.0±3.7 76.0±2.2 79.8±1.8
GAT 70.4±3.7 76.6±2.8 79.9±1.8
BGCN 74.6±2.8 77.5±2.6 80.2±1.5
BGCN (ours) 73.8±2.7 77.6±2.6 80.3±1.6

Fixed split

ChebyNet 67.9±3.1 72.7±2.4 80.4±0.7
GCNN 74.4±0.8 74.9±0.7 81.6±0.5
GAT 73.5±2.2 74.5±1.3 81.6±0.9
BGCN 75.3±0.8 76.6±0.8 81.2±0.8
BGCN (ours) 75.1±1.3 76.7±0.7 81.4±0.6

Table 1. Classification accuracy (in %) for Cora dataset.

Random split 5 labels 10 labels 20 labels

ChebyNet 58.5±4.8 65.8±2.8 67.5±1.9
GCNN 58.5±4.7 65.4±2.6 67.8±2.3
GAT 56.7±5.1 64.1±3.3 67.6±2.3
BGCN 63.0±4.8 69.9±2.3 71.1±1.8
BGCN (ours) 63.9±4.2 68.5±2.3 70.2±2.0

Fixed split

ChebyNet 53.0±1.9 67.7±1.2 70.2±0.9
GCNN 55.4±1.1 65.8±1.1 70.8±0.7
GAT 55.4±2.6 66.1±1.7 70.8±1.0
BGCN 57.3±0.8 70.8±0.6 72.2±0.6
BGCN (ours) 61.4±2.3 69.6±0.6 71.9±0.6

Table 2. Classification accuracy (in %) for Citeseer dataset.

Random split 5 labels 10 labels 20 labels

ChebyNet 62.7±6.9 68.6±5.0 74.3±3.0
GCNN 69.7±4.5 73.9±3.4 77.5±2.5
GAT 68.0±4.8 72.6±3.6 76.4±3.0
BGCN 70.2±4.5 73.3±3.1 76.0±2.6
BGCN (ours) 71.0±4.2 74.6±3.3 77.5±2.4

Fixed split

ChebyNet 68.1±2.5 69.4±1.6 76.0±1.2
GCNN 69.7±0.5 72.8±0.5 78.9±0.3
GAT 70.0±0.6 71.6±0.9 76.9±0.5
BGCN 70.9±0.8 72.3±0.8 76.6±0.7
BGCN (ours) 71.2±0.5 73.6±0.5 79.1±0.4

Table 3. Classification accuracy (in %) for Pubmed dataset.

We observe that the proposed BGCN algorithm obtains
higher classification accuracy compared to its competitors
in most cases. The improvement in accuracy compared to
GCNN is more significant when the number of available
labels is limited to 5 or 10. From Figure 1, we observe
that in most cases, for the Cora and the Citeseer datasets,
the proposed BGCN algorithm corrects more errors of the
GCNN base classifier for nodes with lower degree.

(a)

(b)
Figure 1. Boxplot of different categories of nodes in the (a) Cora
and (b) Citeseer datasets based on the classification results of
the GCNN and the proposed BGCN algorithms. The two groups
are formed by thresholding the degree of the nodes in the test
set at the median value. The box shows 25-75 percentiles; the
triangle represents the mean value; and the median is indicated by
a horizontal line. Whiskers are drawn at the 5 and 95 percentiles
of data points.

5. Conclusion
In this paper, we present a Bayesian GCNN using a node
copying based generative model for graph. The pro-
posed algorithm exhibits superior performance in the semi-
supervised node classification task when the amount of avail-
able labels for training is limited. Future work will involve
conducting a more thorough experimental evaluation and
exploring ways to extend the methodology to other graph
based learning tasks.
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