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Abstract

Conventional sequential learning methods such
as Recurrent Neural Networks (RNNs) focus on
interactions between consecutive inputs, i.e. first-
order Markovian dependency. However, most of
sequential data, as seen with videos, have complex
temporal dependencies that imply variable-length
semantic flows and their compositions, and those
are hard to be captured by conventional meth-
ods. Here, we propose Temporal Dependency
Networks (TDN5s) for learning video data by dis-
covering these complex structures of the videos.
The TDNs represent video as a graph whose nodes
and edges correspond to frames of the video and
their dependencies respectively. Via a parameter-
ized kernel with graph-cut and graph convolutions,
the TDNSs find compositional temporal dependen-
cies of the data in multilevel graph forms. We
evaluate the proposed method on the large-scale
video dataset Youtube-8M. The experimental re-
sults show that our model efficiently learns the
complex semantic structure of video data.

1. Introduction

A fundamental problem in learning sequential data is to
find semantic structures underlying the sequences for better
representation learning. In particular, the most challenging
problems are to segment the whole long-length sequence
in multiple semantic units and to find their compositional
structures.

In terms of neural network architectures, many problems
with sequential inputs are resolved by using Recurrent Neu-
ral Networks (RNNs) as it naturally takes sequential inputs
frame by frame. However, as the RNN-based methods take
frames in (incremental) order, the parameters of the meth-
ods are trained to capture patterns in transitions between
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successive frames, which makes it hard to find long-term
temporal dependencies through overall frames. For this
reason, their variants, such as Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) and Gated Re-
current Units (GRU) (Chung et al., 2014), have made the
suggestion of ignoring noisy (unnecessary) frames and main-
taining the semantic flow through the whole sequence by
turning switches on and off. However, it is still hard to retain
multiple semantic flows and to learn their hierarchical and
compositional relationships.

In this work, we propose Temporal Dependency Networks
(TDN5s) which can discover composite dependency structure
in video inputs and utilize them for representation learning
of videos. The composite structures are defined as a multi-
level graph form, which make it possible to find long-length
dependencies and its hierarchical relationships effectively.

A single video data input is represented as a temporal graph,
where nodes and edges represent frames of the video and
relationships between two nodes. From the input represen-
tations, the TDNs find composite temporal structures in the
graphs with two key operations: temporally constrained
normalized graph-cut and graph convolutions. A set of
semantic units is found by cutting the input graphs with
temporally constrained normalized graph-cuts. Here, the
cutting operator is conducted with the weighted adjacency
matrix of the graph which is estimated by parameterized
kernels. After getting a new adjacency matrix with the cut-
ting operations, representations of the inputs are updated
by applying graph convolutional operations. As a result
of stacking those operations, compositional structures be-
tween whole frames are discovered in a multilevel graph
form. Furthermore, the proposed method can be learned in
an end-to-end manner.

We evaluate our method with the YouTube-8M dataset,
which is for the video understanding task. As a qualita-
tive analysis of the proposed model, we visualize semantic
temporal dependencies of sequential input frames, which
are automatically constructed.

The remainder of the paper is organized as follows. To make
further discussion clear, the problem statement of this paper
are described in the following sections. After that, Temporal
Dependency Networks (TDNs) are suggested in detail and
the experimental results with the real dataset YouTube-8M
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are presented.

2. Problem Statement

We consider videos as inputs, and a video is represented as
a graph G. The graph G has nodes corresponding to each
frame in the video with feature vectors and the dependencies
between two nodes are represented with weight values of
corresponding edges.

Suppose that a video X has N successive frames and each
frame has an m-dimensional feature vector x € R™. Each
frame corresponds to a node v € V of graph G, and the
dependency between two frames v;, v; is represented by a
weighted edge e;; € E. From G = (V, E), the dependency
structures among video frames is defined as the weighted
adjacency matrix A, where A;; = e;;. With aforementioned
notations and definitions, we can now formally define the
problem of video representations learning as follows:

Given the video frames representations X € RN*™ e

seek to discover a weighted adjacency matrix A € RNV*N
which represents dependency among frames.
f: X—=A (1)

With X and A, final representations for video h € R! are
acquired by g.

g:{X,A} = h 2)

The obtained video representations h can be used for various
tasks of video understanding. In this paper, the multi-label
classification problem for video understanding is mainly
considered.

3. Temporal Dependency Networks

The Temporal Dependency Networks (TDN’s) consist of two
modules: a structure learning module with the graph-cuts
and a representation learning module with graph convolu-
tions.

In the structure learning module, the dependencies between
frames A are estimated via parameterized kernels and the
temporally constrained graph-cut algorithm. The suggested
graph-cut algorithm i) makes the dense dependencies to be
sparse, and ii) forms a set of temporally non-overlapped
semantic units (disjoint sub-graphs) to construct the compo-
sitional hierarchies.

After getting the matrix A, representations of the inputs
are updated by applying graph convolutions followed by
pooling operations.

As mentioned earlier in this work, furthermore, by stacking
those modules, compositional structures of whole frames are
discovered in a multilevel graph form. Figure 1(a) illustrates

the whole structure of TDNs. In the next sections, operations
of each of these modules are described in detail.

3.1. Structure Learning Module

The structure learning module is composed of two steps.
The first step is to learn the dependencies over all frames
via the parameterized kernel KC:

Aij = K(zi,zj) = ReLU(f(2:) " f(z))  3)

where f(x) is a single-layer feed-forward network without
non-linear activation:

fx)=wlz +bf 4)

with W/ € R™>™ and b/ € R™.

Then, the A is refined by the normalized graph-cut algo-
rithm (Shi & Malik, 2000). The objective of the normalized
graph-cut is:

Ncut(Vl 7 ‘/2) _ Z’L}i eVi,v; EVAQ Al] Z’L),; eVi,v;eVa AU

Z’Uzevl A;. Z'UjeVQ AJ
&)

It is formulated as a discrete optimization problem and usu-
ally relaxed to continuous, which can be solved by eigen-
value problem with the O(n?) time complexity (Shi & Ma-
lik, 2000). The video data is composed of time continuous
sub-sequences so that no two partitioned sub-graphs have
an overlap in physical time. Therefore, we add the temporal
constraint (Rasheed & Shah, 2005; Sakarya & Telatar, 2008)
as follows,

(t<jori>j) forallv, € Vi,v; € Va (6)

Thus, a cut can only be made along the temporal axis and
complexity of the graph partitioning is reduced to linear
time. We apply the graph-cut recursively so that the refined
A and multiple partitioned sub-graphs are obtained. The
number of sub-graph K is determined by the length of the
video N.

K — 9llogy VN -1 (7

Figure 1(b) depicts the detailed operations of the structure
learning module.

3.2. Representation Learning Module

After estimating the weighted adjacency matrix A, the rep-
resentation learning module updates the representations
of each frame via a graph convolution operation (Kipf
& Welling, 2016) followed by a position-wise fully con-
nected network. We also employ a residual connection (He
et al., 2016) around each layer followed by layer normaliza-
tion (Ba et al., 2016):
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Figure 1. (a): Overall architecture of the Temporal Dependency Networks (TDNs) for a video classification task. (b), (c): sophisticated
illustrations of Structure Learning Module and Representation Learning Module.

7' = LN(o(D'AXW?') + X) (8)
Z = LN(a(Z'WZ + %)+ Z') )

where WZ' . WZ € Rm*™ and bZ € R™,

Once the representations of each frame are updated, an
average pooling operation for each partitioned sub-graph is
applied. Then we can obtain higher level representations
Z € REX™ where K is the number of partitioned sub-
graphs (Figure 1(c)). In the same way, Z is fed into the new
structure learning module and we can get the the video-level
representation h € R™. Finally, labels of the video can be
predicted using a simple classifier.

4. Experiments
4.1. YouTube-8M Dataset

YouTube-8M (Abu-El-Haija et al., 2016) is a benchmark
dataset for video understanding, where the task is to deter-
mine the key topical themes of a video. It consists of 6.1M
video clips collected from YouTube and the video inputs
consist of two multimodal sequences, which are the image
and audio. Each video is labeled with one or multiple tags
referring to the main topic of the video. The dataset split
into three partitions, 70% for training, 20% for validation
and 10% for test. As we have no access to the test labels, all
results in this paper are reported for validation set.

Each video is encoded at 1 frame-per-second up to the
first 300 seconds. As the raw video data is too huge to
be treated, each modality is pre-processed with pretrained
models by the author of the dataset. More specifically, the
frame-level visual features were extracted by inception-v3
network (Szegedy et al., 2016) trained on ImageNet and
the audio features were extracted by VGG-inspired architec-
ture (Hershey et al., 2017) trained for audio classification.
PCA and whitening method are then applied to reduce the
dimensions to 1024 for the visual and 128 for audio features.

Global Average Precision (GAP) is used for the evaluation
metric for the multi-label classification task as used in the
YouTube-8M competition. For each video, 20 labels are
predicted with confidence scores. Then the GAP score
computes the average precision and recall across all of the
predictions and all the videos.

4.2. Qualitative results: Learning compositional
temporal dependencies

In this section, we demonstrate compositional learning capa-
bility of TDNs by analyzing constructed multilevel graphs.
To make further discussion clear, four terms are used to
describe the compositional dependency structure in input
video: semantic units, scenes, sequences and a video for
each level. In Figure 2, a real example with the usage of
video titled “Rice Pudding!” is described to show the results.

In Figure 2(a), the learned adjacency matrices in each layer
are visualized in gray-scale images: two of the left are
obtained from the Ist layer and two of the right from the
2nd layer. To denote multilevel semantic flows, four color-
coded rectangles (blue, orange, red and green) are marked
and those colors are consistent with Figure 2(b) and (c).

Along with diagonal elements of the adjacency matrix in
the 1st layer (Figure 2(a)-1), a set of semantic units are de-
tected corresponding to bright blocks (blue). Interestingly,
we could find that each semantic unit contains highly cor-
related frames. For example, the #1 and #2 are each shots
introducing the YouTube cooking channel and how to make
rice pudding, respectively. The #4 and #5 are shots showing
a recipe of rice pudding and explaining about the various
kinds of rice pudding. The #6 and #7 are shots putting in-
gredients into boiling water in the pot and bringing milk to
boil along with other ingredients. At the end of the video
clip, #11 is a shot decorating cooked rice pudding and #12
is an outro shot that invites the viewers to subscribe.

"https://youtu.be/cD3enxnS-IY
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Figure 2. An example of the constructed temporal dependency structures for a real input video,

titled “Rice Pudding”

(https://youtu.be/cD3enxnS-JY) is visualized. The topical themes (labels) of this video are {Food, Recipe, Cooking, Dish, Dessert,
Cake, baking, Cream, Milk, Pudding and Risotto}. (a): Learned adjacency matrices in the layer 1 and 2 are visualized. The strength of
connection are encoded in a gray-scale which 1 to white and O to black. (a)-1: 12 bright blocks in layer 1 are detected (blue rectangles),
each block (highly connected frames) represents a semantic unit. (a)-2: Sub-graphs of the input are denoted by orange rectangles. It shows
that the semantically meaningful scenes are found by temporally constrained graph-cut. (a)-3 and (a)-4: learned high-level dependency
structures in layer 2 are revealed with red and green rectangles. (b): The conceptual illustration of learned temporal dependency is shown.
In the Ist layer, the temporal dependency structure is learned only within the sub-graphs. In the 2nd layer, inter connections of sub-graphs
are learned to capture high-level temporal dependencies. (c): The whole composite temporal dependencies are presented.

These semantic units compose variable-length scenes of the
video, and each scene corresponds to a sub-graph obtained
via graph-cut (Figure 2(a)-2.). For example, #13 is a scene
introducing this cooking channel and rice pudding. Also,
#15 is a scene of making rice pudding step by step with
details and #16 is an outro scene wrapping up with cooked
rice pudding. The 1st-layer of the model updates representa-
tions of frame-level nodes with these dependency structures,
then aggregates frame-level nodes to form scene-level nodes
(Layer 1 in the Figure 2(b)).

In Figure 2(a)-3 and (a)-4, the sequence-level semantic de-
pendencies (red) are shown. The #17 denotes a sequence of
making rice pudding from beginning to end, which contains
much of the information for identifying the topical theme of
this video. Finally, the representations of scenes are updated
and aggregated to get representations of the whole video
(Layer 2 in the Figure 2(b)). The Figure 2(c) presents the

whole composite temporal dependencies.

5. Conclusions

In this paper, we proposed TDNs which learn not only the
representations of multimodal sequences, but also composite
temporal dependency structures within the sequence. The
qualitative experiment is conducted on a real large-scale
video dataset and shows that the proposed model efficiently
learns the inherent dependency structure of temporal data.
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