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Abstract
A variety of machine learning applications
expect to achieve rapid learning from limited
labeled data. However, the success of most
current models relies on heavy training and big
data. Meta-learning addresses this problem by
extracting common knowledge across different
tasks that can be quickly adapted to new tasks.
However, they rarely explore weakly-supervised
information, which is usually free or cheap to col-
lect. In this paper, we show that weakly-labeled
data can significantly improve the performance
of meta-learning on few-shot classification. We
propose prototype propagation network (PPN)
trained on few-shot tasks together with coarsely
annotated data. Given a category graph of the
targeted fine-classes and some weakly-labeled
coarse-classes, PPN learns to propagate the
prototype of one class to another on the graph,
so that the K-nearest neighbor (KNN) classifier
defined on the propagated prototypes results in
high accuracy across different tasks. The training
tasks are generated by subgraph sampling, and the
training objective is the accumulated level-wise
classification loss on the subgraph. The resulting
graph of prototypes can be reused and updated
for new classes. On two benchmarks, PPN
significantly outperforms most recent few-shot
learning methods in two settings, even when they
are also allowed to train on weakly-labeled data.

1. Introduction
Machine learning (ML) has achieved breakthrough in
various application fields. Nowadays, we can train powerful
deep neural networks containing thousands of layers on
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Figure 1. Prototypes learned by PPN and transformed to a 2D
space by t-SNE. Each edge connects a child class to a parent. The
prototypes spread out as classes become finer, preserve the graph
structure, and reflect the semantic similarity.

millions of data within an acceptable time with expensive
hardware. However, as AI becomes democratized for
personal use with concerns about data privacy, demand is
rapidly growing for few-shot learning of highly customized
models on edge/mobile devices with limited data..

This few-shot learning problem can be addressed by a class
of approaches called “meta-learning”, which learns the com-
mon knowledge shared across different tasks, or “learn-
ing to learn”. For example, it can be shared initialization
weights (Finn et al., 2017), an optimization algorithm (Ravi
& Larochelle, 2017) or a distance/similarity metric (Vinyals
et al., 2016). In contrast to single-task learning, the “training
data” in meta-learning are tasks and the goal is to maximize
the validation accuracy of these sampled tasks.

Although recent meta-learning studies have shown suc-
cess on few-shot learning, most do not leverage weakly-

Code at: https://github.com/liulu112601/PPN
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Figure 2. The few-shot classes (leaf nodes) in training and test tasks are non-overlapping, but they are allowed to share some ancestor
classes. Weakly-labeled data only has non-leaf class labels. PPN is trained on classification tasks with both fine and coarse classes.

supervised information, which has been proved to be
helpful when training data is limited, e.g., in weakly-
supervised (Zhou, 2017) and semi-supervised learning (Zhu
& Ghahramani, 2002). In this paper, we show that weakly-
supervised information, e.g., an image of a Tractor with a
coarse label of Machine, can significantly improve the per-
formance of meta-learning on few-shot classification. We
additionally assume that a category graph (Fig. 2) describing
the class relationship is available.

We propose a meta-learning model called prototype propaga-
tion network (PPN) to explore the above weakly-supervised
information for few-shot classification tasks. PPN produces
a prototype per class by propagating the prototype of each
class to its child classes on the category graph, where an
attention mechanism generates the edge weights used for
propagation. The learning goal of PPN is to minimize the
validation errors of a KNN classifier built on the propa-
gated prototypes for few-shot classification tasks. The clas-
sification error on weakly-labeled data can thus be back-
propagated to improve the prototypes of other classes. The
resulting graph of prototypes can be repeatedly used, up-
dated and augmented on new tasks as an episodic memory.

To fully explore the weakly-labeled data, we develop a
level-wise method to train tasks, generated by subgraph
sampling, for both coarse and fine classes on the graph.
In addition, we introduce two testing settings that are
common in different practical application scenarios: one
(PPN+) is allowed to use weakly-labeled data in testing
tasks and is given the edges connecting test classes to the
category graph, while the other (PPN) cannot access any
extra information except for the few-shot training data of
the new tasks. In experiments, we extracted two benchmark
datasets from ILSVRC-12 (ImageNet) (Deng et al., 2009),
specifically for weakly-supervised few-shot learning.
In different test settings, our method consistently and
significantly outperforms the three most recently proposed
few-shot learning models and their variants, which also
trained on weakly-labeled data. The prototypes learned by
PPN is visualized in Fig. 1 (Maaten & Hinton, 2008).

2. Prototype Propagation Networks (PPN)
2.1. Weakly-Supervised Few-Shot Learning

In weakly-supervised few-shot learning, we learn from two
types of data: the few-shot data X annotated by the target
fine-class labels Y and the weakly-labeled data Xw anno-
tated by coarse-class labels Yw. We assume a directed
acyclic graph (DAG) G = (Y ∪ Yw, E) exists, where each
node y ∈ Y∪Yw denotes a class, and each edge z → y ∈ E
connects a parent class z to one of its child classes y.

We follow the setting of few-shot learning, where each task
T is defined by a subset of classes. In our problem, as
shown by Fig. 2, the few-shot classes used for training and
test are non-overlapping, but we allow them to share some
ancestors on the graph. We also allow training tasks to cover
any classes on the graph. The training aims to solve the risk
minimization of all training tasks. Similar to prototypical
networks (Snell et al., 2017), Given a data point x, we
first compute its representation f(x) ∈ Rd, where f(·) is
convolutional neural networks (CNN) with parameter Θcnn,
then the prediction is computed as

Pr(y|x;PYT ) ,
exp(−‖f(x)− Py)‖2)∑

z∈YT exp(−‖f(x)− Pz)‖2)
, (1)

In the following, we will introduce prototype propagation
which generates PYT for any task T .

2.2. Prototype Propagation

In PPN, each training task T is a level-wise classification
on a sampled subgraph Gi ⊆ G, i.e., a classification task
over YT = YG

j
i , where Gji denotes the level-j of subgraph

Gi and YG
j
i is the set of all the classes on Gji . The prototype

propagation is defined on each subgraph Gi, which covers
classes YGi . Given the associated training data X y for class
y ∈ YGi , the prototype of class y is initialized by averaging
the representations f(x) of samples x ∈ X y , i.e.,

P 0
y ,

1

|X y|
∑

x∈Xy

f(x). (2)
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For each parent class z of class y on Gi, we propagate
P 0

z to class y with edge weight a(P 0
y ,P

0
z ) measuring

the similarity between class y and z, and aggregate the
propagation (the messages) from all the parent classes by

P+
y ,

∑
z∈PGi

y

a(P 0
y ,P

0
z )× P 0

z , (3)

where PGiy denotes the set of all parent classes of y on
subgraph Gi, and the edge weight a(P 0

y ,P
0
z ) is a learnable

similarity metric defined by dot-product attention (Vaswani
et al., 2017), i.e.,

a(p, q) ,
〈g(p), h(q)〉

‖g(p)‖ × ‖h(q)‖
, (4)

where g(·) and h(·) are learnable transformations ap-
plied to prototypes with parameters Θatt, e.g., linear
transformations g(p) = Wgp and h(q) = Whq.

The prototype after propagation is a weighted average of
P 0

y and P+
y with weight λ ∈ [0, 1], i.e.,

Py , λ× P 0
y + (1− λ)× P+

y . (5)

For each classification task T on subgraph Gi, Py is used in
Eq. (1) to produce the likelihood probability.

2.3. Level-wise Training of PPN on Subgraphs

The goal of meta-training is to learn a parameterized prop-
agation mechanism defined by Eq. (2)-Eq. (5) on few-shot
tasks. In each iteration, we randomly sample a subset of few-
shot classes, which together with all their ancestor classes
and edges on G form a subgraph Gi. A training task T is
drawn from each level Gji ∼ Gi as the classification over
classes YT = YG

j
i . The goal in our problem is defined as:

min
Θcnn,Θatt

∑
Gi∼G

∑
Gj
i∼Gi

∑
(x,y)∼DGj

i

− log Pr(y|x;P
YGj

i
), (6)

where DG
j
i is the data distribution of data-label pair (x, y)

from classes YG
j
i . Since the prototype propagation is de-

fined on the whole subgraph, it generates a computational
graph relating each class to all of its ancestor classes. Hence,
during training, the classification error on each class is back-
propagated to the prototypes of its ancestor classes, which
will be updated to improve the validation accuracy of finer
classes and propagated to generate the prototypes of the
few-shot classes later.

The complete level-wise training procedure of PPN is given
in Algorithm 1, each of whose iterations comprises two main
stages: prototype propagation (lines 9-11) which builds a
computational graph over prototypes of the classes on a
sampled subgraph Gi, and level-wise training (lines 12-16)

Algorithm 1 Level-wise Training of PPN

Input: few-shot data X with labels from Y ,
weakly-labeled data Xw with labels from Yw,
category graph G = (Y ∪ Yw, E),
learning rate scheduler for SGD, λ, m;

1: Initialize: randomly initialize P , Θcnn, Θatt, τ ← 0;
2: while not converge do
3: if τ mod m = 0 then
4: for class y ∈ Y ∪ Yw do
5: Update P 0

y by Eq. (2) and save it in buffer;
6: end for
7: end if
8: Sample a subgraph Gi ∼ G;
9: for class y ∈ YGi do

10: Get P 0
y from buffer, and propagate by Eq. (3)-(5);

11: end for
12: initialize loss L← 0;
13: for level-j Gji ∼ Gi do
14: accumulate loss using Gji by Eq. (1);
15: end for
16: Mini-batch SGD to minimize L, update Θcnn, Θatt;
17: τ ← τ + 1;
18: end while

which updates the parameters Θcnn and Θatt on per-level
classification tasks. To improve computational efficiency,
we lazily update P 0

y for all classes y ∈ Y ∪ Yw every m
epochs, as shown in lines 3-7.

2.4. Meta-Test: Apply PPN to New Tasks

We study two test settings for weakly-supervised few-shot
learning. They differ in if the weakly-supervised informa-
tion, i.e., the weakly-labeled data and the connections of new
classes to the category graph, is still accessible (PPN+) in
the test tasks or not (PPN). The PPN setting is more challeng-
ing but is preferred in a variety of applications, for example,
where the test tasks happen on different devices, whereas
the first setting is more appropriate for life-long/continual
learning on a single machine. In the PPN setting, we can still
leverage the trained prototypes: for an unseen test class y,
we find the K-nearest neighbors of P 0

y among all achieved
prototypes, and treat the training classes associated with
the K-nearest neighbor prototypes as the parents of y on G.

In both settings, for each class y in a test task T , we apply
the prototype propagation in Eq. (2)-(5) on a subgraph
composed of y and its parents PGy . This produces the final
prototype Py, which will be used in KNN classification
on task T as a candidate of nearest neighbor within PYT .
In the first setting (PPN+), when a parent class y′ ∈ PGy is
among the training classes, we use the buffered prototype
P 0

y′ from training for propagation; otherwise, we use
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Table 1. Validation accuracy (mean±CI%95) on 600 test tasks of PPN/PPN+ and baselines on WS-ImageNet-Pure(-P) and WS-ImageNet-
Mix(-M). “W-S” refers to “weakly-Supervised”, and “*” marks the modified baselines using the same W-S information as our method.

Model W-S 5way1shot-P 5way1shot-M 10way1shot-P 10way1shot-M
Prototypical Net (Snell et al., 2017) N 33.17±1.65% 31.93±1.62% 20.48±0.99% 21.02±0.97%
GNN (Garcia & Bruna, 2018) N 30.83±0.66% 33.60±0.11% 20.33±0.60% 22.00±0.89%
Closer Look (Chen et al., 2019) N 32.27±1.58% 33.10±1.57% 22.78±0.94% 20.85±0.92%

Prototypical Network* Y 32.13±1.48% 31.80±1.48% 20.07±0.93% 20.33±0.98%
GNN* Y 32.33±0.52% 30.33±0.80% 22.50±0.67% 23.33±1.03%
Closer Look* Y 32.63±1.55% 31.13±1.51% 20.03±0.83% 20.25±0.87%

PPN (Ours) Y 37.37±1.64% 36.23±1.69% 24.17±1.00% 23.30±1.06%
PPN+(Ours) Y 48.00±1.70% 41.60±1.67% 35.75±1.13% 29.87±1.08%

Eq. (2) to compute P 0
y′ over all weakly-labeled samples

belonging to class y′. In the second setting (PPN), since
all the parents of y have to be training classes, we directly
use their buffered prototypes from training for propagation.

3. Experiments
We compare PPN/PPN+ to three baseline methods, i.e.,
Prototypical Networks, GNN and Closer Look (Chen et al.,
2019), and their variants of using the same weakly-labeled
data as PPN/PPN+. For their variants, we apply the same
level-wise training on the same weakly-labeled data as in
PPN/PPN+ to the original implementations. The results
are reported in Table 1, where the variants of baselines are
marked by “*” following the baseline name.

In PPN/PPN+ and all the baseline methods (as well as their
variants), we use the same backbone CNN that has been used
in most previous few-shot learning works (Snell et al., 2017;
Finn et al., 2017; Vinyals et al., 2016). It has 4 convolutional
layers, each with 64 filters of 3 × 3 convolution, followed
by batch normalization (Ioffe & Szegedy, 2015), ReLU
nonlinearity, and 2 × 2 max-pooling. The transformation
g(·) and h(·) in the attention module are linear layers.

In PPN/PPN+, the variance of P 0
y increases when the num-

ber of samples per class reduces. Hence, we set λ = 0
in Eq. (5) for N -way 1-shot classifications, and λ = 0.5
for N -way 5-shot classification. During training, we lazily
update P 0

y for all the classes on the graph G every m = 5
epochs and choose the nearest K = 3 neighbours as par-
ents among all prototypes gained after training for PPN.
ADAM (Kingma & Ba, 2015) is used to train the model
for 150k iterations, with an initial learning rate of 10−3.
We reduce the learning rate by a factor of 0.7× every 15k
iterations starting from the 10k-th iterations.

3.1. Results

WS-ImageNet-Pure is a subset of ILSVRC-12 with 212
classes and 49,002 images in total. On the ImageNet Word-

Net Hierarchy, we extract 80% classes from level-7 as
leaf nodes of the category graph G and use them as the tar-
geted classes Y in few-shot tasks. The ancestor nodes of
these classes on G are then sampled from level-6 to level-3,
which compose weakly-labeled classes Yw. The number
of sampled data points associated with each class reduces
exponentially when the level of the class increases. This is
consistent with many practical scenarios, i.e., samples with
finer-class labels can provide more information about tar-
geted few-shot tasks, but they are much more expensive to
obtain and usually insufficient. We divide the classes from
level-7 into two disjoint subsets with ratio 4:1 for training
and test respectively.

The experimental results of PPN/PPN+ and all the baselines
(and their weakly-supervised variants ending with “*”) on
WS-ImageNet-Pure are shown in Table 1. PPN/PPN+ out-
perform all other methods. The table shows that PPN/PPN+
are very advantageous in 1-shot tasks, and that PPN+
achieves ∼ 15% improvement compared to other methods.
This implies that the weakly-supervised information can be
much helpful when supervised data is highly insufficient,
and our method is able to significantly boost performance by
exploring the weakly-labeled data. Although all the weakly-
supervised variants of baselines are trained on the same data
as PPN/PPN+, they do not achieve similar improvement be-
cause their model structures do not have such mechanisms
as the prototype propagation in PPN which relates different
classes and tasks. In addition, training on unrelated tasks
can be distracting and even detrimental to performance. In
contrast, PPN/PPN+ build a computational graph of proto-
types with both coarse and fine classes, and the error on any
class can be used to update the prototypes of other classes
via backpropagation on the computational graph.

WS-ImageNet-Mix To verify if PPN can still learn from
weakly-labeled data that belong to other fine classes not
involved in the few-shot tasks, we propose another subset
of ILSVRC-12, WS-ImageNet-Mix with 215 classes and
338,548 images in total. We extract WS-ImageNet-Mix by
following the same procedure as extracting WS-ImageNet-
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Pure except that data points sampled for a coarse (non-leaf)
class can belong to the remaining ∼ 20% level-7 classes
outside of the ∼ 80% level-7 classes used for generating
few-shot tasks.

The experimental results are reported in Table 1, which
shows that PPN/PPN+ still outperform all other methods,
and PPN+ outperforms them by ∼ 10% for 1-shot
classification. This indicates that PPN/PPN+ is robust to
weakly-labeled data unrelated to the final few-shot tasks.
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