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Abstract

Conversational machine reading comprehension
(MRC) has proven significantly more challeng-
ing compared to traditional MRC since it requires
better utilization of conversation history. How-
ever, most existing approaches do not effectively
capture conversation history and thus have trou-
ble handling questions involving coreference or
ellipsis. We propose a novel graph neural net-
work (GNN) based model, namely GRAPHFLOW,
which captures conversational flow in the dialog.
Specifically, we first propose a new approach to
dynamically construct a question-aware context
graph from passage text at each turn. We then
present a novel flow mechanism to model the tem-
poral dependencies in the sequence of context
graphs. The proposed GRAPHFLOW model shows
superior performance compared to existing state-
of-the-art methods. For instance, GRAPHFLOW
outperforms two recently proposed models on the
CoQA benchmark dataset: FLOWQA by 2.3%
and SDNet by 0.7% on F1 score, respectively.

1. Introduction

Recent years have observed a surge of interest in conversa-
tional machine reading comprehension (MRC). Unlike the
traditional setting of MRC that requires answering a single
question given a passage (aka context), the conversational
MRC task is to answer the current question in a conversa-
tion given a passage and the previous questions and answers.
The goal of this task is to mimic real-world situations where
humans seek information in a conversational manner.

Despite the success existing works have achieved on tradi-
tional MRC (e.g., SQuAD (Rajpurkar et al., 2016)), con-
versational MRC has proven significantly more challenging
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when the conversations are incorporated into the MRC task.
During a conversation (Reddy et al., 2018; Choi et al., 2018),
it has been observed that shifts of focus happen frequently
and many questions refer back to the conversation history
via either coreference or ellipsis. We model conversation
flow as a sequence of latent states in the dialog and learn
important latent states associated with these shifts of focus.

To cope with the above challenges, we propose GRAPH-
FLoWw, a Graph Neural Network (GNN) based model for
conversational MRC. As shown in Fig. 1, GRAPHFLOW
consists of three components, Encoding layer, Reasoning
layer, and Prediction layer. The Encoding layer encodes con-
versation history and the context text that aligns question
embeddings. The Reasoning layer dynamically constructs
a question-aware context graph at each turn, and then ap-
plies GNNSs to process the sequence of context graphs. In
particular, the graph node embedding outputs of the reason-
ing process at the previous turn are used as a starting state
when reasoning at the current turn, which is closer to how
humans perform reasoning in a conversational setting, com-
pared to existing approaches. The prediction layer predicts
the answers based on the matching scores of the question
embedding and the context graph node embeddings per turn.

2. Graph-Flow Approach
2.1. Encoding Layer

We denote the context as C' which is a sequence of words
{e1,ca, ..., ¢ } and the question at the i-th turn as ); which
is a sequence of words {qy), qéi), ey q,@}. The details of
encoding the question and context are given next.

Pretrained word embeddings We use 300-dim GloVe
(Pennington et al., 2014) embeddings as well as 1024-dim
BERT (Devlin et al., 2018) embeddings to embed each word
in the context and the question. Following (Zhu et al., 2018),
we pre-compute BERT embeddings for each word using a
weighted sum of BERT layer outputs.

Aligned question embeddings Following (Lee et al., 2016)
and recent work, for each context word c; at the ¢-th turn, we

incorporate an aligned question embedding f,;; gn(c;i)) =

D a% gy " where g;’* is the GloVe embedding of question
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Figure 1. Overall architecture of the proposed model. Best viewed in color.

word ¢ and ay,l is an attention score between context

word ¢; and question word ql(f)
B

a% oc exp(ReLU(Wg§)"ReLU(Wg;’*))

. Here we define the attention

score a
)

where W e R%*? is a trainable model parameter, d is the
hidden state size, and g? is the GloVe embedding of context
word ¢;. To simplify notation, we denote the above attention
mechanism as Align(A, B, C), meaning that an attention
matrix is computed between two sets of vectors A and B,
which is later used to get a linear combination of vector
set C. Hence we can reformulate the above alignment as
Jaiign(C')) = Align(g€, g, g?).

Linguistic features Following previous works (Chen et al.,
2017; Huang et al., 2018; Zhu et al., 2018), for each con-
text word, we also encode linguistic features to a vector
f],-ng(cy)) concatenating 12-dim POS (part-of-speech) em-
bedding, 8-dim NER (named entity recognition) embedding
and a 3-dim exact matching vector indicating whether the
context word appears in ;.

Conversation history Following (Choi et al., 2018), we
utilize conversation history by concatenating a feature vec-
tor fans(c§l)) encoding previous N answer locations to the
context word embeddings. In addition, we prepend previous
N question-answer pairs to the current question and con-
catenate a 3-dim turn marker embedding fmm(ql(j)) to each
word vector in the augmented question to indicate which
turn it belongs to (e.g., ¢ indicates the previous ¢-th turn).

In summary, at the ¢-th turn in a conversation, each context

word ¢; is encoded by a vector wg,) which is a concatenation

of g5, BERTS, fuiign(c\”), fing(c\"”)) and funs(ct"). And

each question word q,(j) is encoded by a vector w** which is

a concatenation of g,?", BERT% and flum(q,(f)). We denote

Qi
k

and question word vectors w;°, respectively at the ¢-th turn.

2.2. Reasoning Layer
2.2.1. QUESTION UNDERSTANDING

For each question ();, we apply a BILSTM (Hochreiter &
Schmidhuber, 1997) to the raw question embeddings Wi
to obtain contextualized embeddings Q; € R**™,

Q; =4\, ...,q" = BILSTM(W®")

gl )
Each question is then represented as a weighted sum of word
vectors in the question via a self-attention mechanism.

g = Zal(j)ql(j), where af oc exp(w'q))
¥

3)

where w is a d-dim trainable weight.
Finally, we encode question history sequentially in turns
with a LSTM to generate history-aware question vectors.

p1,...pr = LSTM@G™®, ....g™) 4)

The output hidden states of the LSTM network p1, ...
will be used for predicting answers.

, PT

2.2.2. GRAPH LEARNER

We now introduce how to dynamically build a weighted
graph to model semantic relationships among context words
at each turn in a conversation. To this end, we first apply
an attention mechanism to the context representations W(CZ)
(which additionally incorporate both question information
and conversation history as described in Section 2.1) at the
i-th turn to compute an attention matrix A(i), serving as a
weighted adjacency matrix for the context graph, defined as,

AY — ReLU(UW)TReLU(UWY) 5)
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where U is a d x d,. trainable weight and d,. is the embedding
size of Wg).

Considering that a fully connected context graph is not
only computationally expensive but also makes little sense
for reasoning, we proceed to extract a sparse graph from
Ag;) via a KNN-style strategy where we only keep the K
nearest neighbors (including itself) for each context node
and apply a softmax function to these selected adjacency
matrix elements to get a sparse and normalized adjacency

matrix A(é)
Ag) = softmax(topk(Ag))) (6)

2.2.3. GRAPH-FLOW

Given the context graphs constructed by the Graph Learner,
we propose a novel Graph-Flow (GF) mechanism to sequen-
tially process a sequence of context graphs. Readers can
think that it is analogous to an RNN-style structure where
the main difference is that each element in a sequence is
not a data point, but instead a graph. As we advance in a
sequence of graphs, we process each graph using a GNN
and the output will be used when processing the next graph.

The details of the GF mechanism are as follows. At the
i-th turn, before we apply a GNN to the context graph G;,
we initialize context node embeddings by fusing both the
original context information Cé_l and the updated context
information at the previous turn C._; via a fusion function.

C! = GNN(C1, A%y
Cl ! — Fuse(C21, L 15)

Zj’

)

where [ is the GF layer index. Note that we can stack
multiple GF layers to enhance the performance if necessary.

As a result, the graph node embedding outputs of the rea-
soning process at the previous turn are used as a starting
state when reasoning at the current turn. Note that we set
Cé‘l = Cé_l as we will not incorporate any historical
information at the first turn.

We use Gated Graph Neural Networks (GGNN) (Li et al.,
2015) as our GNN module. When running GGNN, the
aggregated neighborhood information for each node is com-
puted as a weighted sum of its neighboring node embeddings
where the weights come from the normalized adjacency ma-
trix ./NX(C?). The fusion function is designed as a gated sum of
two information sources,

Fuse(a,b) =z+a+ (1—2z)*b

8
z=0(W.[a;b;axbja—b]+b.) ®

where o is a sigmoid function and z is a gating vector.

To simplify notation, we denote the GF mechanism as
C! = Graph-Flow(C'~!, A ) which takes as input the old

graph node embeddings C!~! and the normalized adjacency
matrix A, and updates the graph node embeddings.

2.2.4. MULTI-LEVEL GRAPH REASONING

While a GNN is responsible for modeling the global inter-
actions among context words, modeling local interactions
among consecutive context words is also important for the
task. Therefore, before feeding the context word represen-
tations to a GNN, we first apply a BILSTM to the context
words, that is, C{ = BiLSTM(Wg)), and we then use the
output CY as the initial context node embedding. Inspired
by recent work (Wang et al., 2018) on modeling the context
with different levels of granularity, we choose to apply one
GF layer on low level representations of the context and an-
other GF layer on high level representations of the context,
as formulated in the following.

C' = Graph-Flow(C°, A¢)
HY = [Qi; g% BERT?]
= [C}; g% BERTY]
iign<0< >> = Align(H{, H?, Q:)]
C} = BiLSTM([C}; [ (C)])
C? = Graph-Flow(C', A¢)

(©))

2.3. Prediction Layer

Following (Huang et al., 2018; Zhu et al., 2018), we use the
same answer span selection method to predict the start and
end probabilities P;°; and P, of the j-th context word for
the i-th question. We additionally train a classifier to handle
unanswerable questions or questions whose answers are not
text spans in the context. A detail restatement of the answer
span selection method can be found in Appendix A.

3. Experiments

In this section, we conduct an extensive evaluation of our
proposed model against state-of-the-art conversational MRC
models. We use two popular benchmarks, described below.

3.1. Data and Metrics

The CoQA data contains 127k questions with answers, ob-
tained from 8k conversations. In CoQA, answers are in
free-form and hence are not necessarily text spans from
the context. The QuAC data contains 98k questions with
answers, obtained from 13k conversations. All the answers
in QuAC are text spans from the context.

The main evaluation metric is F1 score which is the har-
monic mean of precision and recall at word level between
the predicted answer and ground truth. In addition, for
QuAC the Human Equivalence Score (i.e., HEQ-Q and



GRAPHFLOW: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension

Table 1 Model and human performance (% in F1 score) on the CoQA test set.

[ Child. Liter. Mid-High. News Wiki Reddit Science [ Overall
PGNet (See et al., 2017) 49.0 433 47.5 47.5 451 38.6 38.1 441
DrQA (Chen et al., 2017) 46.7 53.9 54.1 57.8 594 45.0 51.0 52.6
DrQA+PGNet (Reddy et al., 2018) 64.2 63.7 67.1 68.3 714 578 63.1 65.1
BiDAF++ (Yatskar, 2018) 66.5 65.7 70.2 71.6 72.6  60.8 67.1 67.8
FLOWQA (Huang et al., 2018) 73.7 71.6 76.8 79.0 80.2 67.8 76.1 75.0
SDNet (Zhu et al., 2018) 75.4 739 771 80.3 83.1 69.8 76.8 76.6
GRAPHFLOW 77.1 75.6 715 79.1 82.5 170.8 78.4 77.3
Human (Reddy et al., 2018) 90.2 88.4 89.8 88.6 89.9  86.7 88.1 88.8

Table 2 Model and human performance (in %) on the QuAC
test set.

[ F1 HEQ-Q HEQ-D
BiDAF++ (Yatskar, 2018) 60.1 54.8 4.0
FLOWQA (Huang et al., 2018) 64.1 59.6 5.8
GRAPHFLOW 649 60.3 5.1
Human (Choi et al., 2018) 80.8 100 100

HEQ-D) is used to judge whether a system performs as well
as an average human. Please refer to (Reddy et al., 2018;
Choi et al., 2018) for details of these metrics.

3.2. Model Comparison

As shown in Table 1 and Table 2, our model consistently
outperforms these state-of-the-art baselines in terms of F1
score. In particular, GRAPHFLOW yields improvement over
all existing models on both datasets by at least +0.7% F1
on CoQA and +0.8% F1 on QuAC, respectively. Com-
pared with FLOWQA which is also based on the flow idea,
our model improves F1 by 2.3% on CoQA and 0.8% on
QuAC, which demonstrates the superiority of our GF mech-
anism over the Integration-Flow mechanism. Compared
with SDNet which relies on sophisticated inter-attention and
self-attention mechanisms, our model improves F1 by 0.7%
on CoQA (They did not report the results on QuAC.).

3.3. Ablation Study

Table 3 Ablation study: model performance (in %) on the
CoQA dev. set.

[ F1

GRAPHFLOW (2-His) 78.3
— PreQues 78.2

— PreAns 717.7

— PreAnsLoc 76.6

— BERT 70.2

- GF 68.8

— TempConn 69.9
GRAPHFLOW (1-His) 78.2
GRAPHFLOW (0-His) 76.7

We conduct an extensive ablation study to further investi-
gate the performance impact of different components in our

model as shown in Table 3. We find that the pretrained
BERT embedding (i.e., — BERT) has the most impact on
the performance, which again demonstrates the power of
large-scale pretrained language models. Our proposed GF
mechanism (i.e., — GF) also contributes significantly to the
model performance (i.e., improves F1 score by 1.4%). In
addition, within the GF layer, both the GNN part (i.e., 1.1%
F1) and the temporal connection part (i.e., 0.3% F1) con-
tribute to the results. We also notice that explicitly adding
conversation history to the current turn helps the model
performance by comparing GRAPHFLOW (2-His), GRAPH-
FLow (1-His) and GRAPHFLOW (0-His). We can see that
the previous answer information (i.e., — PreAns) is more cru-
cial than the previous question information (i.e., — PreQues).
And among many ways to use the previous answer infor-
mation, directly marking previous answer locations (i.e., —
PreAnsLoc) seems to be the most effective. We conjecture
this is partially because the turn transitions in a conversa-
tion are usually smooth and marking the previous answer
locations helps the model better identify relevant context
chunks for the current question.

4. Conclusion

We proposed a novel GNNs-based model, namely GRAPH-
FLow, for conversational MRC which carries over the rea-
soning output throughout a conversation. On two recently
released conversational MRC benchmarks, our proposed
model achieves superior results over previous approaches.

In the future, we would like to investigate more effective
ways of automatically learning graph structures from free
text and modeling temporal connections between sequential
graphs.
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A. Prediction Layer

Following (Huang et al., 2018; Zhu et al., 2018), we predict

answer spans by computing the start and end probabilities
Pfj and PzEj of the j-th context word for the i-th question,

formulated as,

T

Pfj o exp(c?’j Wspi)
~ s 2
p: = GRU(pivEPi,jci,j)

J
T -
PzEJ oC exp(cij WEgD;)

(10)

where W g and W are d x d trainable weights and GRU
is a Gated Recurrent Unit (Cho et al., 2014).

We additionally train a classifier to handle unanswerable
questions or questions whose answers are not text spans
in the context. We design different classifiers for the two
benchmarks CoQA and QuAC as CoQA contains questions
with abstractive answers but QuAC does not. For the CoQA
benchmark, we train a multi-class classifier which classi-
fies a question into one of the four categories including
“unknown”, “yes”, “no” and “other”. We do text span pre-
diction only if the question type is “other”. For the QuAC
benchmark, we train three separate classifiers to handle three
question classification tasks including a binary classification
task (i.e., “unknown”) and two multi-class classification
tasks (i.e., “yes/no” and “followup”). The classifier is de-
fined as,

éf = [fmean(czz);fmax(czz)]

~ (11)

Pic = U(fc(pi)C?T)
where f. is a linear layer for binary classification and a
dense layer for multi-class classification, which maps a d-
dim vector to a (num_class x 2d)-dim vector. Further, o
is a sigmoid function for binary classification and a soft-
max function for multi-class classification. We use C? to
represent the whole context at the ¢-th turn which is a con-

catenation of average pooling and max pooling outputs of
2.
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A.0.1. TRAINING

For training, the goal is to minimize the cross entropy loss
of both text span prediction (if the question requires it) and
question type prediction. The cross entropy of text span
prediction is defined as,

Ls=—Y I (log(P3,,) +1og(PL) (12

where I indicates whether this question requires text span
prediction, and s; and e; are the ground-truth start and end
positions of the answer span for the i-th question.

As aforementioned, we train a single classifier for question
type prediction on CoQA and three separate classifiers for
question type prediction on QuAC. Therefore, the loss of
question type prediction is defined differently for the two
datasets as the following,

CoQA
»CCOQ :—Zlog.Pf;1 (13)

where ¢; indicates the question type for the i-th question.

LAC _ Z{t? log PV 4+ (1 —tY)log(1 — PY)

’ (14)
+ log P;fty + log Pft!’ }

where t¥, t} and t!" indicate the ground-truth labels of the
“unknown”, “yes/no” and “followup” prediction tasks for
i-th question, and PV, PY and P! are the corresponding

probability predictions.

Thus, the training losses for CoQA and QuAC are Lg +
EgOQA and Lg + Eg“AC, respectively.

A.0.2. PREDICTION

During inference, for CoQA, we do text span prediction only
if span probability is the largest; otherwise, the answer is
“unknown”, “yes” or “no” depending on which one has the
largest probability. For QuAC, we do text span prediction
only if PV is no larger than a certain threshold'; otherwise,

the question is unanswerable.

B. Model Settings

We keep and fix the GloVe vectors for those words that
appear more than 5 times in the training set. The size of
all hidden layers is set to 300. When constructing context
graphs, the neighborhood size is set to 10. The number of
GNN hops is set to 5 for CoQA and 3 for QuAC. During
training, we apply dropout after the embedding layers (0.3

"We use 0.3 in our experiments as this maximizes the F1 score
on the development set.

for GloVe and 0.4 for BERT). A dropout rate of 0.3 is also
applied after the output of all RNN layers. We use Adamax
(Kingma & Ba, 2014) as the optimizer and the learning rate
is set to 0.001. We reduce the learning rate by a factor of
0.5 if the validation F1 score has stopped improving every
one epoch. We stop the training when no improvement is
seen for 10 consecutive epochs. We clip the gradient at
length 10. We batch over dialogs and the batch size is set
to 1. When augmenting the current turn with conversation
history, we only consider the previous two turns. When
doing text span prediction, the span is constrained to have
a maximum length of 12 for CoQA and 35 for QuAC. All
these hyper-parameters are tuned on the development set.

C. Effects of Parameter Tuning

We study the effects of various hyperparameter choices in
GRAPHFLOW regarding the GF component, such as the
number of GNN hops and the KNN neighborhood size. The
number of GNN hops controls how far node information
can be propagated in a graph. The KNN neighborhood size
controls the sparsity of the constructed graph. Fig. 2 and
Fig. 3 show the F1 score on the QuAC dev. set with various
values for the number of GNN hops and the KNN neighbor-
hood size, respectively. The default values for the number of
GNN hops and the KNN neighborhood size are 3 and 10, re-
spectively. As we can see, both of the two hyperparameters
have significant impacts on the model performance. When
reaching an optimal value, further increasing the number
of GNN hops or KNN neighborhood size does not help the
model performance.

F1 score

4
Number of GNN hops

Figure 2. Effect of number of GNN hops on the QuAC dev. set.

D. Interpretability Analysis

Here we visualize the memory bank (i.e., an m by d matrix)
which stores the hidden representations (and thus reasoning
output) of the context throughout a conversation. While
directly visualizing the hidden representations is difficult,
thanks to the flow-based mechanism introduced into our
model, we instead visualize the changes of hidden repre-
sentations of context words between consecutive turns. We
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Figure 3. Effect of KNN neighborhood size on the QuAC dev. set.

expect that the most changing parts of the context should be
those which are relevant to the questions being asked and
therefore should probably be able to indicate shifts of the
focus in a conversation.

Following (Huang et al., 2018), we visualize this by com-
puting the cosine similarity of the hidden representations
of the same context words at consecutive turns, and then
highlight the words that have small cosine similarity scores
(i.e., change more significantly). Note that for better visual-
ization, we apply an attention threshold of 0.3 to highlight
only the dramatically changing context words. Fig. 4 high-
lights the most changing context words between consecutive
turns in a conversation from the CoQA dev. set. As we can
see, the hidden representations of context words which are
relevant to the consecutive questions are changing most
and thus highlighted most. We suspect this is in part be-
cause when the focus shifts, the model finds out the context
chunks relevant to the previous turn become less important
but those relevant to the current turn become more important.
Therefore, the memory updates in these regions are the most
active. Obviously, this makes the model easier to answer
follow-up questions. As we observe in our visualization
experiments, in conversations extensively involving coref-
erence or ellipsis, our model can still perform reasonably
well.
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Q1: Who went to the farm? -> Q2: Why?

Bilfwent to the farm [GIBlIsome Beefiforihis brother 's Bifthday.. When he arrived there he saw that all six of the

cows were sad and had brown spots . The cows were all eating their breakfast in a big grassy meadow . He thought
that the spots looked very strange so he went closer to the cows to get a better look . When he got closer he also
saw that there were five white chickens sitting on the fence . The fence was painted blue and had some dirty black
spots on it . Billy wondered where the dirty spots had come . Soon he got close to the chickens and they got scared .
Al five chickens flew away and went to eat some food . After Billy got a good look at the cows he went to the farmer
to buy some beef . The farmer gave him four pounds of beef for ten dollars . Billy thought that it was a good deal so
he went home and cooked his brother dinner . His brother was very happy with the dinner . Billy 's mom was also

very happy .

Q2: Why? -> Q3: For what?

Billy went to the farm [GIBljIsome BeslforRisIbrother 's birthday . When he arrived there he saw that all six of the
cows were sad and had brown spots . The cows were all eating their breakfast in a big grassy meadow . He thought
that the spots looked very strange so he went closer to the cows to get a better look . When he got closer he also
saw that there were five white chickens sitting on the fence . The fence was painted blue and had some dirty black
spots on it . Billy wondered where the dirty spots had come . Soon he got close to the chickens and they got scared .
Al five chickens flew away and went to eat some food . After Billy got a good look at the cows he went to the farmer
f8lbliy’some beef.. The farmer gave him four pounds of beef foriSmMGBIAISI: Billy thought that it was a good deal so
he went home and cooked his brother dinner . His brother was very happy with the dinner . Billy 's mom was also

very happy .

Q3: For what? -> Q4: How many cows did he see there?

Billy went to the farm to buy some beef fofiNISIBrOtNer: S IBIRAGEAN. When he arrived there he saw that BlliSilof the
cows were sad and had brown spots . The cows were all eating their breakfast in a big grassy meadow . He thought
that the spots looked very strange so he went closer to the cows to get a better look . When he got closer he also
saw that there were five white chickens sitting on the fence . The fence was painted blue and had some dirty black
spots on it . Billy wondered where the dirty spots had come . Soon he got close to the chickens and they got scared .
All five chickens flew away and went to eat some food . After Billy got a good look at the cows he went to the farmer
to buy some beef . The farmer gave him four pounds of beef for ten dollars . Billy thought that it was a good deal so
he went home and cooked his brother dinner . His brother was very happy with the dinner . Billy 's mom was also

very happy .

Q4: How many cows did he see there? -> Q5: Did they have spots?

Billy'went to the farm to buy some beef for his brother 's birthday . When he arrived there he saw that Zlll§Rlof the
EoWs Were'sad and RadIBISWRISEEEII The cows were all eating their breakfast in a big grassy meadow . He thought
that the spots looked very strange so he went closer to the cows to get a better look . When he got closer he also
saw that there were five white chickens sitting on the fence . The fence was painted blue and Radisome GifyIBIZcKI
BBaislon it Billy Wondered Where the Biftyispots|had come . Soon he got close to the chickens and theylgot scared .
All five chickens flew away and went to eat some food . After Billy got a good look at the cows he went to the farmer
to buy some beef . The farmer gave him four pounds of beef for ten dollars . Billy thought that it was a good deal so
he went home and cooked his brother dinner . His brother was very happy with the dinner . Billy 's mom was also

very happy .
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Q5: Did they have spots? -> Q6: What color?

Billy went to the farm to buy some beef for his brother 's birthday . When he arrived there he saw that all six of the
EoWsiWere'sadland had brown spots . The cows were all eating their breakfast in a big grassy meadow . He thought
that the spots looked very strange so he went closer to the cows to get a better look . When he got closer he also
saw that there were five [lilfill@lchickens sitting on the fence . The fence was painted Blligland had some dirty BIGK|
spots on it . Billy wondered where the dirty spots had come . Soon he got close to the chickens and they got scared .
All five chickens flew away and went to eat some food . After Billy got a good look at the cows he went to the farmer
to buy some beef . The farmer gave him four pounds of beef for ten dollars . Billy thought that it was a good deal so
he went home and cooked his brother dinner . His brother was very happy with the dinner . Billy ‘s mom was also

very happy .

Q6: What color? -> Q7: What were they doing?

Billy went to the farm to buy some beef for his brother 's birthday . When he arrived there he saw that all six of the
cows were sad and had BISHISEGIS). The cows were all 8atingitheir breakfastlin a big grassy meadow . He thought
that the spots looked very strange so he went closer to the cows to get a better look . When he got closer he also
saw that there were five white chickens sitting on the fence . The fence was painted blue and had some dirty black
spots on it . Billy wondered where the dirty spots had come . Soon he got close to the chickens and they got scared .
All five chickens flew away and went to eat some food . After Billy got a good look at the cows he went to the farmer
to buy some beef . The farmer gave him four pounds of beef for ten dollars . Billy thought that it was a good deal so
he went home and cooked his brother dinner . His brother was very happy with the dinner . Billy 's mom was also

very happy .

Q7: What were they doing? -> Q8: Where?

Billy went to the farm to buy some beef for his brother 's birthday . When he arrived there he saw that all six of the
cows were sad and had brown spots . The Gows were all Batigitheir Breakiastin a big grassy meadow . He thought
that the spots looked very strange so he went closer to the cows to get a better look . When he got closer he also
saw that there were five white chickens sitting on the fence . The fence was painted blue and had some dirty black
spots on it . Billy wondered where the dirty spots had come . Soon he got close to the chickens and they got scared .
All five chickens flew away and went to eat some food . After Billy got a good lock at the cows he went to the farmer
to buy some beef . The farmer gave him four pounds of beef for ten dollars . Billy thought that it was a good deal so
he went home and cooked his brother dinner . His brother was very happy with the dinner . Billy 's mom was also

very happy .

Figure 4. The highlighted context indicates the QA model’s focus shifts between consecutive turns.



