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Abstract
We consider the probabilistic analogue to neural
network matrix factorization (Dziugaite & Roy,
2015), which we construct with Bayesian neu-
ral networks and fit with variational inference.
We find that a linear model fit with variational
inference can attain equivalent predictive perfor-
mance to the regular neural network variants on
the Movielens data sets. We discuss the impli-
cations of this result, which include some sug-
gestions on the pros and cons of using the neural
network construction, as well as the variational
approach to inference. Such a probabilistic ap-
proach is required, however, when considering
the important class of stochastic block models.
We describe a variational inference algorithm for
a neural network matrix factorization model with
nonparametric block structure and evaluate its per-
formance on the NIPS co-authorship data set.

1. Introduction
Matrix factorization models are an important class of ma-
chine learning methods, playing a prominent role in dimen-
sionality reduction, with applications to product recommen-
dations in commerce, among others. For example, Xn,m

could represent the amount of item m ≤ M purchased by
user n ≤ N . A classic approach to factorizing the N ×M
matrix X would assume a linear model such as

Xn,m = UTn Vm =

K∑
k=1

Un,kVm,k, n ≤ N,m ≤M, (1)

for some (relatively small) number of factors K � N,M ,
and where the parameter vectors Un and Vm are to be in-
ferred with a procedure such as singular value decomposi-
tion. Dziugaite & Roy (2015) consider a neural network
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matrix factorization alternative that replaces the linear func-
tion in Eq. (1) with a feed-forward neural network (with
inputs Un and Vm), which improves predictive performance
when predicting missing entries of the matrix.

Here we take a probabilistic approach by using a Bayesian
neural network, and we fit the parameters of the model with
variational inference. While probabilistic matrix factoriza-
tion (Mnih & Salakhutdinov, 2008) has shown improve-
ments (for linear models) over its non-Bayesian counterpart,
we find only a small improvement for this Bayesian variant
of neural network matrix factorization (fit via variational
inference, anyway) upon the predictive performance of the
neural network on the Movielens 100K and 1M data sets.
However, we do find that variational inference can get a
linear model to match the performance of the neural net-
work, and that the neural network structure provides further
improvements when side information (such as the genre
of the film) is included. In light of this (rather surprising)
result, we provide a discussion on the pros and cons of us-
ing neural network structures and/or variational inference in
these contexts.

Finally, one case when a probabilistic approach is required
for tractable inference is in the important class of stochastic
block models. We present a variant of neural network matrix
factorization applied to network models (i.e., the matrix X
is symmetric in this case) that captures nonparametric block
structure, similar in spirit to the infinite relational model
(Kemp et al., 2006). We derive the variational inference
procedure for such a model, and we show that its predic-
tive performance improves upon its linear analogues when
applied to the NIPS co-authorship data set.

2. Neural network matrix factorization
Following Dziugaite & Roy (2015), model the entries of X
as the outputs from a neural network fθ with parameters
θ, whose inputs are (unobserved) features of the users and
items. In particular, for every n ≤ N and m ≤M , let

Xn,m = fθ([Un, Vm, U
′
n,1 ◦ V ′m,1, . . . , U ′n,D ◦ V ′m,D]),

where the parameters have the following shapes: Un, Vm ∈
RK , and U ′n,d, V

′
m,d ∈ RK′

, d ≤ D, for some selected K,
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K ′, and D. The notation ◦ here denotes the element-wise
product, and [a, b, . . . ] denotes the vectorization function,
i.e., the vectors a, b, . . . are concatenated into a single vector.
Note that this neural network has 2K +K ′D inputs and a
univariate output.

Classic, linear constructions of the matrix factorization
model can be recovered by restricting fθ to be a linear
function. The vectors U ′n,d ◦ V ′m,d play an analogous role to
the traditional bilinear terms in the linear variants of matrix
factorization, and the terms Un and Vm play the role of the
user- and item-specific bias terms in modeling variants such
as those presented by Koren et al. (2009).

Inference in this model could then minimize the following
regularized squared error loss function

∑
(n,m)∈O

(Xn,m − X̂n,m)2 + λ ·
[∑
n

||Un||22

+
∑
m

||Vm||22 +
∑
n

||U ′n||2F +
∑
m

||V ′m||2F
]
, (2)

X̂n,m = fθ([Un, Vm, U
′
n,1 ◦ V ′m,1, . . . , U ′n,D ◦ V ′m,D]),

where O denotes the set of observed edges, ||A||F denotes
the Frobenius norm for an array A, and λ > 0 is a regular-
ization parameter.

3. Stochastic variational inference
We consider letting fθ be a Bayesian neural network and
elect a mean-field variational approach to inference. In the
Bayesian perspective, the likelihood of the parameters given
the data is conditionally Gaussian

Xn,m | µn,m ∼ N (µn,m, σ
2) (3)

µn,m = fθ([Un, Vm, U
′
n,1 ◦ V ′m,1, . . . , U ′n,D ◦ V ′m,D]),

for every n ≤ N , m ≤ M and some additional noise pa-
rameter σ > 0. The components of the input arrays U ,
V , U ′, and V ′ are all given independent mean zero Gaus-
sian prior distributions (with array-specific, shared variance
parameters), as are the weights and biases in θ.

We follow Salimans & Knowles (2013); Kingma & Welling
(2014) to implement a gradient-based variational inference
routine, where minibatches are subsampled from the ob-
served edges in the graph, and where the required gradients
are estimated by low-variance Monte-Carlo approximation
routines. This technique is applied to both the neural net-
work parameters θ and the inputs U, V, U ′, V ′, which are
updated in alternating steps during the gradient descent rou-
tine. This has become a common practice for variational
inference with Bayesian neural networks, and so we defer
the reader to the references for technical details.

3.1. Exploration of the linear model

We ran experiments on the Movielens 100K and Movie-
lens 1M data sets (Harper & Konstan, 2016), which contain
N = 943 users and M = 1, 682 items (with 100,000 obser-
vations) and N = 6, 040 users and M = 3, 706 items (with
1,000,209 observations), respectively. Following the exper-
imental setup of Dziugaite & Roy (2015), we create five
random training/testing splits of the data sets, where 10%
of the data set is held out as a test set in each instance. The
root mean squared error (RMSE) is displayed for various
models in Table 1.

The results from Dziugaite & Roy (2015) using a neural
network for fθ with hidden layers, each with 50 sigmoidal
units, are reported as NN(3) and NN(4), and the models
fit with variational inference as VI(0) and VI(3). In all of
these variants, K = 10, D′ = 60, and K ′ = 1. The VI
models adapted the learning rates using Adam (Kingma
& Ba, 2015), with an initial learning rate of 0.001. Batch
learning (i.e., no minibatches) was used for all models. Due
to memory constraints, we used training minibatches of
30,000 for the 1M data set. For reference, we have also
included a singular value decomposition (SVD) baseline
(truncated at 60 singular values), and the biased matrix
factorization (Bias-MF) model (Koren et al., 2009).

Rather surprisingly, with variational inference we were able
to get a linear model to match the performance of the neural
network architecture. One possible conclusion is that vari-
ational inference is simply better at model selection than
even a fine grid search. A Bayesian neural network fit with
mean-field variational inference has the interpretation of
placing a separate L2 regularization parameter (associated
with the variance parameters of the Gaussian distributed
components of the variational distribution) on each weight
(and possibly bias) parameter of the function fθ. This is
rarely done in the non-Bayesian approaches to training neu-
ral neural networks, where typically a single or very few
such regularization parameters are shared across the weights
of the network. Moreover, with variational inference, these
(possibly very many) weight regularization parameters are
fit during gradient descent, whereas in non-Bayesian ap-
proaches they are typically selected by grid searching across
multiple inference runs, which are easy to implement in par-
allel with the appropriate computing infrastructure, though
can be a bit cumbersome to do so systematically. We note
that Dziugaite & Roy (2015) did not regularize the parame-
ters of fθ in their experiments. However, it’s still a useful
(if unsurprising) lesson to see that within a single run of the
inference procedure, variational inference is able to seam-
lessly do an otherwise piecemeal computational task. There
is a slightly larger computational burden associated with
variational inference, however, since the number of param-
eters to fit during inference doubles. Computations also
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Table 1. RMSE scores for the Movielens data sets. The results for Bias-MF, NN(3), and NN(4) are taken from Dziugaite & Roy (2015).

DATA SET SVD BIAS-MF NN(3) NN(4) VI(0) VI(3) VI(0)+S VI(3)+S

MOVIELENS 100K 0.987 0.911 0.907 0.903 0.903 0.902 0.900 0.898
MOVIELENS 1M 0.917 0.852 0.846 0.843 0.839 0.836 - -

increase linearly with the number of Monte Carlo samples
used to approximate the required gradients (see Salimans
& Knowles (2013) and Kingma & Welling (2014)), though
this number can usually be very small (often one).

Viewed alternatively, the performance of the neural net-
work suggests that by using its expressive power along with
modern techniques in gradient-based inference, a user may
largely ignore careful model selection on the weights of the
neural network, or exhaustively fine grid searches over the
regularization parameter λ.

3.2. Incorporating side information

For the Movielens 100K experiments, we also included
the genre of each film as side information into the model,
concatenated to the movie embedding Vm in the form of a
one-hot vector. There are 19 different genres. The results
are presented in Table 1 as VI(0)+S for the linear model and
VI(3)+S for a neural network with 3 hidden layers of 50
units each. We can see that the performance of both models
improves, perhaps suggesting that the nonlinear structure
of the neural network is advantageous when handling (ob-
served) side information.

4. Stochastic block models for network data
In this section, we will restrict our attention to the special
case of network data sets, where the rows and columns of an
N×N data matrixX correspond to the same set ofN users,
and an entryXi,j = 1 if there is a “link” between users i and
j and Xi,j = 0 otherwise. Such models are appropriate for
social networks, where links represent friendships between
individuals. We further assume the matrix X is symmetric
(i.e., Xi,j = Xj,i), and we do not allow self-links (i.e., the
diagonal elements of X are meaningless).

In the previous section, we considered some pros and cons
of optionally using a Bayesian neural network fθ. However,
one scenario where a Bayesian approach is required for
tractable inference is with stochastic block models (Kemp
et al., 2006; Airoldi et al., 2008). In this important class of
“community detection” models for network data, the users
are clustered into groups, and the parameters of the model
are shared amongst the members of a group in order to cap-
ture a well-observed phenomenon known as homogeneity.
For example, clusters in a social network could represent
shared interests of the users, or geographic location, both of

which presumably increase the likelihood that those users
will be linked.

We take a nonparametric, Bayesian approach to stochas-
tic blockmodeling, in a similar spirit to the infinite rela-
tional model by Kemp et al. (2006), which uses the Dirich-
let process to model a potentially unbounded number of
clusters that is inferred from the data. For every i ≤ N , let
Zi ∈ {1, 2, . . . } denote the (random) assignment of user
i to one of an unbounded number of groups. For every
c = 1, 2, . . . , let Uc ∈ RK and U ′c,d ∈ RK′

, d ≤ D, denote
the shared input features for the users in group c. Then for
every i < j ≤ N , let

Xi,j | pi,j ∼ Bernoulli(pi,j) (4)
pi,j = fθ([UZi

, UZj
, U ′Zi,1 ◦ U

′
Zj ,1, . . . , U

′
Zi,D ◦ U

′
Zj ,D]),

where the neural network fθ is now specified so that its
output layer is pushed through a mapping to (0, 1), such as
the logistic sigmoid function.

The distribution on the assignment variables Z :=
(Z1, . . . , Zn) is given by the (assignments under a) Dirichlet
process mixture model, which we may describe via the stick-
breaking construction for the Dirichlet process (Sethuraman,
1994). Independently for every i ≤ N , let Zi | π ∼ π be a
sample in {1, 2, . . . } according to the (infinite dimensional)
probability vector π := (π1, π2, . . . ) defined as follows

πi = Vi

i−1∏
j=1

(1− Vj), i = 1, 2, . . . , (5)

Vi ∼ beta(1, α), i = 1, 2, . . . , (6)

where
∑∞
i=1 πi = 1, almost surely (as required), and

p(Zn | π) = πZn , for every n ≤ N , and α > 0 is some
concentration parameter.

The likelihood of the parameters given the data is then

L = p(θ)

∞∏
i=1

beta(Vi; 1, α)

N∏
n=1

[
p(Zn | π)p(Un)p(U ′n)

]
×

∏
i<j≤N

Bernoulli(Xi,j ; pi,j), (7)

where p(Un), p(U ′n), and p(θ) are the usual component-
wise Gaussian densities for the inputs and neural network
parameters specified in Section 3.
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Table 2. RMSE and AUC scores on the NIPS co-authorship data
set. Bias-MF is non-Bayesian. VI and SBM are linear, since
additional layers did not improve results. Note that SBM has
significantly fewer parameters than the other models.

METRIC SVD BIAS-MF VI SBM

RMSE 0.136 0.125 0.120 0.128
AUC 0.707 0.839 0.844 0.718

4.1. Gradient-based variational inference

We follow Blei & Jordan (2006) and take a mean-field vari-
ational approach to inference with this model, in which the
discrete variables Z are integrated out, turning an intractable
inference task into an optimization of continuous variables.
The number of groups is also automatically inferred during
this process. In particular, the variational approximation
introduces a truncation level as the maximum number of
components of the Dirichlet process. In practice, this trun-
cation is selected to be large enough so that the algorithm
does not “exhaust” all available components. Let

q(Z, V ) =

N∏
i=1

Mult(Zi; ηi)

T∏
c=1

beta(Vc; ρc,1, ρc,2) (8)

denote the mean-field variational approximation, where ηi
is a T -dimensional probability vector for some selected
truncation level T , and ρc,1, ρc,2 > 0.

The parameters ηi may be updated analytically following
derivations similar to those by Blei & Jordan (2006) as
follows. For every i ≤ N and t ≤ T ,

ηi,t ∝ exp
{
Eq[log Vt] +

t−1∑
`=1

Eq[log(1− V`)] (9)

+
∑

j : (i,j)∈O

Eq[log Bernoulli(Xi,j | pi,j)]
}
,

where Eq[log Vt] = ψ(ρt,1)−ψ(ρt,1+ρt,2) and Eq[log(1−
Vt)] = ψ(ρt,2)− ψ(ρt,1 + ρt,2), with ψ(a) := Γ′(a)/Γ(a)
denoting the digamma function, and where the term
Eq[log Bernoulli(Xi,j | pi,j)] is approximated with a
Monte-Carlo estimate.

The variational parameters ρc,1, ρc,2 also have analytic up-
dates, however, we found it more successful to infer them
with gradient-based updates. The concentration parameter
α is optimized directly with gradient-based updates (i.e.,
type-I maximum likelihood). Finally, the inputs U and U ′

and the neural network parameters θ are inferred in the usual
way (specified in Section 3). The parameter update schedule
we followed is shown in Algorithm 1.

Algorithm 1 Stochastic variational inference for the stochas-
tic block model
Data: N ×M matrix X .
repeat

1 Sample a minibatch of the edges Ob ⊂ O.
2 For every node n present in (an edge in) the minibatch

Ob, update ηn according to Eq. (9) with gradients
approximated on Ob.

3 Update q(V ) and α.
4 Update q(θ) with gradients approximated on Ob.
5 For every node n present in the minibatch Ob, update

q(Un) and q(U ′n) with gradients approximated on Ob.
until Convergence;

4.2. Exploring the NIPS co-authorship dataset

We ran experiments on the NIPS 1–17 co-authorship data
set (Chechik & Globerson, 2007), consisting of authors
that had published at least nine papers at NIPS between
1988 and 2003 (resulting in N = 234 authors). A link oc-
curs between two authors if they co-authored at least one
paper. A truncation level of T = 7 was used in the varia-
tional approximation to the Dirichlet process, and we note
that these did not appear to be “exhausted” in our exper-
iments. The experimental setup (five randomly held out
test sets) and hyperparameter settings are otherwise iden-
tical to those in Section 3.1. The RMSE and AUC scores
(averaged over the training runs and test sets) are reported
in Table 2. Note that the (non-Bayesian) neural network
matrix factorization model with no hidden layers is equiv-
alent to the biased matrix factorization model “Bias-MF”,
and so we use that name here. Bias-MF and its Bayesian
analogue (fit with variational inference) “VI” only slightly
best the linear variant of the stochastic block model “SBM”,
which is remarkable since the stochastic block model has
significantly fewer features. In particular, note SBM uses
T ∗ (K +K ′ ∗D) input parameters, whereas Bias-MF and
VI use N ∗ (K +K ′ ∗D). This difference is perhaps more
pronounced, since the properties of the Dirichlet process
attempt to effectively “pinch out” some of these features.
Additional layers did not improve results here.

5. Future directions
On one hand, our results suggest investigation into models
constructed from neural networks on whether their success
depends on increasing model capacity/complexity. On the
other hand, conventional wisdom has always suggested that
more parsimonious models generalize better to new data,
though that does not seem to be a hindrance to the neural
network models in our experiments. Finally, the apparent
advantages of the neural network when incorporating side
information should be further explored.
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