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Abstract

Visual relationship detection aims to detect the in-
teractions between objects in an image; however,
this task suffers from combinatorial explosion due
to the variety of objects and interactions. Since the
interactions associated with the same object are
dependent, we explore the dependency of inter-
actions to reduce the search space. We explicitly
model objects and interactions by an interaction
graph and then propose a message-passing-style
algorithm to propagate the contextual information.
We thus call the proposed method neural message
passing (NMP). We further integrate language pri-
ors and spatial cues to rule out unrealistic interac-
tions and capture spatial interactions. Experimen-
tal results on two benchmark datasets demonstrate
the superiority of our proposed method.

1. Introduction

Visual relationship detection serves as a middle-level un-
derstanding task that bridges the gap between low-level
image recognition, such as classification and object detec-
tion (Simonyan & Zisserman, 2014; Ren et al., 2015), and
high-level image understanding tasks, such as image caption-
ing (Vinyals et al., 2015), visual question answering (Antol
et al., 2015). Visual relationship denotes the visually rec-
ognizable interaction between subject and object, which is
defined as triplet (subject-predicate-object).

Assuming there are N object categories and K predicate
categories, there will be N2K relationship categories. The
initial sequential mechanism treats each relationship triplet
as a unique class and cannot apply to large dataset due
to the explosive increase of the search space. (Lu et al.,
2016) proposed a separation mechanism inferring objects
and predicate separately, which reduces the complexity to
O(N + K); however, this method leads to the missing con-
text between objects and predicate. To address this, (Li et al.,
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Figure 1. An interaction graph explicitly models objects and their
interactions. We use message passing to propagate contextual
information between objects and interactions to learn both node
and edge embeddings. Pairwise relationships are detected based
on edge embeddings.

2017b; Yin et al., 2018) proposes message passing within
the relationship triplet to jointly extract features. Further-
more, (Cui et al., 2018) emphasizes global contexts by intro-
ducing the visual appearance of the surroundings; however,
all the previous works ignore the relationship dependencies
across relation triplets, e.g., the interaction between ‘bus’
and ‘road’ is more likely to be ‘park on’ than ‘drive on’
given ‘bus in the front of car’ and ‘car park on road’.

To exploit this contextual information, we construct an inter-
action graph for each image whose nodes denote the objects
and edges denote the interactions. Different from the visual
graph in (Cui et al., 2018), which considers edges as an in-
termediate step to improve object embeddings, we explicitly
use the edge embeddings to represent the relationship be-
tween objects. The edge embeddings are obtained through
message passing over the interaction graph, which takes the
high-order relationships into account. Considering visual
appearance only may be difficult to capture all varieties of
interactions. Semantic priors of objects and spatial locations
are further introduced to rule out unreasonable interactions
and capture spatial interactions. The main contributions of
this paper are:

e We propose a novel graph-based method to explicitly
model interactions between objects in an image and use a
message-passing-style algorithm to capture high-order in-
teractions;

e We introduce the word embedding of each object and
the relative spatial location between pairwise objects as the
complement to the visual appearance;

o The proposed method consistently outperforms the previ-
ous state-of-the-art methods on two widely used datasets.
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Figure 2. The overall framework of our proposed method, called neural message passing (NMP). Each detected object is represented by
visual appearance and word embedding. A directed graph is built over these proposals, whose nodes denote the objects, edges denote
the corresponding interactions. Message passing module is then applied to integrate contextual information. The concatenation of the
enhanced interaction embeddings and the relative spatial locations are used for edge classification. Details can be found in Section 3.

2. Related Work

Visual relationship detection has been extensively studied
in recent years. At the very beginning, (Galleguillos et al.,
2008; Farhadi et al., 2010; Sadeghi & Farhadi, 2011; Ra-
manathan et al., 2015) assigned a unique class to each rela-
tionship triplet; however, with the increase of objects and
predicates, the amount of relationship triplets is explosive.
To reduce the complexity, (Lu et al., 2016) learned objects
and predicates separately; however, the separate model re-
sults in the lack of context between the related components.
To address this, (Yin et al., 2018) encouraged feature shar-
ing by message passing between the three components. Fur-
thermore, the global contexts are introduced by utilizing
graph. (Liang et al., 2017) sequentially predicted interac-
tions based on the semantic-action graph of the entire train-
ing set. (Cui et al., 2018) enhanced object embeddings by
aggregating the visual appearance of the surroundings in
the visual graph. However, the interaction embedding was
ignored in the previous works. Instead, we explicitly model
both interaction and object embeddings in the interaction
graph. Language priors and spatial cues are further intro-
duced to improve the performance in (Plummer et al., 2017,
Liang et al., 2018). In this work, we integrate the word em-
beddings and spatial location to help estimate relationship.

Graph neural networks recently have got a lot of attention
and achieved significant success in various fields (Wang
etal., 2017; Gilmer et al., 2017; Li et al., 2017a; Battaglia
et al., 2018; Yang et al., 2018a; Niu et al., 2018; Woo
et al., 2018; Kipf et al., 2018; Zhang et al., 2018), espe-
cially in social networks (Hamilton et al., 2017), knowledge
graphs (Kampffmeyer et al., 2018) and human object inter-
action (Qi et al., 2018). In this work, we apply graph neural
networks to the application of visual relationship detection.

3. Methodology

Overview. Visual relationship detection has two settings:
predicate detection and relationship detection. Predicate
detection aims to predict the interactions between given

pairs of objects. Relationship detection aims to simulta-
neously detect a set of objects and predict the interactions
between pairs of objects.

We use multi-cues to better represent the objects and con-
struct a graph to learn global contexts. The interaction
graph organizes objects and interactions to structured data,
such that we can jointly learn object and interaction em-
beddings. The main challenge is to explore the high-order
interactions over structured data. To achieve this, we use a
message-passing mechanism similar to (Kipf et al., 2018).
The intuition is that each object is influenced by the related
interactions and each interaction depends on the connected
objects. The overview of the framework is in Fig. 2.

Feature Extraction. The functionality of this module is
to get the visual and semantic cues of the objects and the
relative spatial locations between pairwise objects. When
only using visual appearance, the estimation of the predicate
may be difficult due to the variety of relationships. While
only using language priors, the relationship prediction is
vague and not specified on the state of subject and object.
Both visual and word embeddings represent each individ-
ual object, we further introduce relative spatial location to
capture spatial interactions, such as ’near’, "under’, "on’.

The 7-th object in the image is associated with a bounding
box b; = {z;;y:; w;; s, } and a category ¢;, which are given
in the predicate detection task and obtained through object
detection module in the relationship detection task. To ex-
tract deep visual features of an object, we adopt VGG16 (Si-
monyan & Zisserman, 2014). Firstly, we feed the original
image into the network. When it comes to the last convo-
lutional layer, we apply Rol align to crop out the bound-
ing box, which is fed into the last fully connected layers
afterward. The resulting features form the visual embed-
ding a;. To complement the visual information, we use
the pre-trained word2vector (Mikolov et al., 2013) to map
the object category c; into word embedding s;. The object
embedding of the i-th object o; = [a;;s;] is the concatena-
tion of the visual embedding a; and the word embedding
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s;. As for the spatial information, we adopt the idea of
box regression and use box delta to get the box differences.
Furthermore, we use intersection over union (iou) and nor-
malized distance between two objects. The union bounding
box of b; and b; is denoted as b;;. A(b;,b;) (Zhang et al.,
2017b) is the box delta that regresses the bounding box b;
to b;. dis(b;, b;) (Cui et al., 2018) and iou(b;, b;) denote
the normalized distance and iou between b; and b;. The
spatial location between subject v; and object v; is l;; =
[A(b“ bj); A(bz, bij); A(b]‘, bij); iou(bi, bj); diS(bi, bj)}

Graph Construction. The interaction graph contains a
node set V and an edge set E. Each node v; € V represents
an object, which is composed of a bounding box b;, a corre-
sponding object category c¢; and the original embedding o;.
Each edge ¢;; € E denotes the predicate between node v;
and v;. The relationship triplet (v;-e;;-v;) and (v;-€;;-v;)
represent two different instances. To distinguish e;; from
€;i, we construct a directed graph.

For predicate detection, we construct a graph for each image
based on the given object pairs. The edge exists when
the connected objects are paired. We have observed that
most of the interactions happen between close objects. For
relationship detection, we assume that object interacts with
the surroundings and assign the existence score of the edge
based on dis(b;, b;) and iou(b;, b;) through the following
formula, ¢ and ¢, are two thresholds.

1, dis(bi,bj) < t1 or iOU(bi,bJ‘) > ta,
0, otherwise.

exist(e;;) = { (1)

Message Passing. The functionality of the message pass-
ing module is to improve interaction embeddings by aggre-
gating global context cues. Instead of utilizing the com-
mon graph convolutional networks (Kipf & Welling, 2017)
to strengthen the node embeddings, we leverage node-to-
edge and edge-to-node message passing mechanism similar
to (Gilmer et al., 2017; Kipf et al., 2018) to explicitly model
the node and edge embeddings. In the node-to-edge phase,
each edge receives messages from the connected nodes. In
the edge-to-node phase, the node embedding is updated ac-
cording to the linked edge embeddings. Mathematically, the
overall message passing module works as

Oil = femb (Oi> (2)

v—eel = fi ([oil;ojl]) 3)
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where o; is the object embedding of the i-th object and ej;
is the edge embedding of between the i-th and j-th objects.

The function f.,,, maps the original node embedding into
the hidden space. Then we use the object embedding o to
obtain edge embedding eilj. [; ] denotes concatenation. We
use the concatenation rather than the sum or mean in order
to distinguish the direction of the edges. di" is the amount
of edges pointing to v;, while d?** is the amount of edges v;
pointing out; both of which are used to normalize the edge
embeddings. eilj only depends on two node embeddings o;
and oj, while eizj leverages more global information. After-
ward, the final edge embedding e;; in Eq. (6) is a fusion of
the local embedding ef; and the global embedding €.

The functions f!, fl, f? are neural networks used for
mapping between node and edge embeddings. In our ex-
periments, we adopt two-layers fully-connected networks
(MLPs) with Elu activation function which introduces non-
linearity to enhance feature expression.

Edge Classification. The functionality of this module is to
classify the interactions between objects. The interaction
embedding is the concatenation of the final edge embedding
and spatial location; that is, x;; = [ej;;1;;]. Then, the
confidence of the predicate category between the i-th and
the j-th objects is y;; = softmax (Wx; ), where W is
the embedding matrix that maps interaction embeddings
to match predicate categories. In our experiment, we use
multi-class cross entropy loss for classification.

Table 1. Predicate and relationship detection results (%) in VRD
dataset. ”-” denotes the results are not reported in the original
paper. k denotes the number of predicates associated with each
object. The total predicate category of VRD dataset is 70.

PREDICATE DET. RELATIONSHIP DET.

k METHODS

R@50 R@100 R@50 R@100

LP 47.87 47.87 13.86 14.70

VTE 44.76 44.76 14.07 15.20

STA 48.03 48.03 - -

E—1 CAI 53.79 53.79 15.63 17.39
VIP-CNN - - 17.32 20.01
ZOOM-NET 50.69 50.69 18.92 21.41

VRL - - 18.19 20.79

NMP 57.69 57.69 20.19 23.98

DR-NET 80.78 81.90 17.73 20.88

ZOOM-NET 84.25 90.59 21.37 27.30

k=170 DSR 86.01 93.18 19.03 23.29
CDDN 87.57 93.76 21.46 26.14

NMP 90.61 96.61 21.50 27.50

4. Experiments

Datasets. Visual Relationship Detection (VRD) (Lu et al.,
2016) contains 5,000 images with 100 object categories
and 70 predicate categories. There are 1,877 relationship
triplets only exist in the test set, which is used for zero-
shot evaluation. Visual Gnome (VG) (Krishna et al., 2017,
Zhang et al., 2017a) contains 99,658 images with 200 object
categories and 100 predicates.

Evaluation Metrics. Following (Lu et al., 2016), we use
Recall@50 (R@50) and Recall@100 (R@100) as the evalu-
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Table 2. Ablation Study (%) on VRD dataset. A denotes the visual appearance of the object bounding box. S denotes the word embedding
of the object category. L denotes the spatial location. GRAPH denotes contextual information through message passing.

PREDICATE DET.

RELATIONSHIP DET.

FEATURE k=1 k=170 k=1 k=170

R@50/100 R@50 R@100 \ R@50 R@100 R@50 R@100

A 48.98 86.24 94.34 17.92 21.59 19.29 25.20

A+L 50.93 87.13 94.89 18.54 22.03 19.89 25.37
A+L+S 53.60 89.57 96.19 18.49 22.27 20.30 26.14
GRAPH+A 52.88 87.12 95.03 19.65 23.19 20.75 26.43
GRAPH+A+L 54.13 88.71 95.64 19.99 23.51 21.48 26.90
GRAPH+A+L+S 57.69 90.61 96.61 20.19 23.98 21.50 27.50

Table 3. Zero-shot predicate detection results (%) in VRD dataset.
Those methods without reporting the results on zero-shot setting
are excluded from comparison.

L METHODS PREDICATE DET.

R@50 R@100
E o1 LP 8.45 8.45
= NMP 27.50  27.50
DSR 60.90  79.81
k=70 CDDN  67.66  84.00
NMP 72.95  88.44

Table 4. Predicate detection results (%) in VG dataset. The total
predicate category of VG dataset is 100.

PREDICATE DET.

k METHODS  p @50 R@100

VTE 62.63  62.87

k=1 STA 62.71  62.94
NMP 67.03  67.29

DSR 69.06  74.37

L—100 CDDN 7042 7492
= DR-NET  88.26  91.26
NMP 89.69  95.54

ation metrics. R@n computes the fraction of true positive
predicted relationships over the total annotated relationships
among the top n confident predictions. Let k& be the number
of predicates associated with each object. Similarly to (Yu
et al., 2017), we report R@n under various k values.

Compared with State-of-the-art Methods. We compare
our proposed model NMP against several previous state-of-
the-art methods in Table 1: LP(Lu et al., 2016), VTE(Zhang
et al., 2017a), STA(Yang et al., 2018b), CAI(Zhuang
et al., 2017), DR-Net(Dai et al., 2017), ViP-CNN(Li et al.,
2017b), Zoom-Net(Yin et al., 2018), VRL(Liang et al.,
2017), DSR(Liang et al., 2018), CDDN(Clui et al., 2018).
We can see that (i) NMP consistently outperforms state-of-
the-art methods under all settings; (ii) NMP outperforms
CDDN by about 3% according to Recall@100 on predicate
detection task, which shows the effectiveness of our mes-
sage passing algorithm over the directed interaction graph;

(iii) we improve the state-of-the-art to 96.61% and 27.50%
on predicate and relationship detection tasks.

Table 3 shows the comparison of the zero-shot predicate
detection task. We exclude the performance on zero-shot
relationship detection task since it is very sensitive to the
number of detected bounding boxes. We can see that the
performance is improved by about 5% and 4.5% on R@50
and R@ 100 respectively, which proves the promising gen-
eralization ability of our algorithm. To further prove the
ability of our algorithm, we conduct experiments on the
larger dataset: VG. Similarly to the previous works, we
report results on the predicate detection task in Table 4. Our
algorithm achieves considerably superior performance than
the previous works.

Ablation Study. We introduce message passing, visual
embedding, word embedding and spatial location in our
proposed network. Table 2 shows the influence of each
factor to the performance. We test on both predicate and
relationship detection tasks on VRD dataset. We see that (i)
the spatial location and the word embedding improve the
performance by around 1% and 3% respectively on predicate
detection. Because the spatial information is not easy to
learn from the visual appearance, and language priors can
help rule out some obviously unreasonable compositions;
(i1) message passing (GRAPH) improves the recall stably
by around 3%, 2% on predicate and relationship detection,
respectively. The gain in relationship detection is smaller
than that of predicate detection; this may be caused by the
wrongly detected objects and incomplete annotation.

5. Conclusions

In this paper, we address the lack of context between interac-
tions in previous works. We construct an interaction graph
with a message-passing mechanism to explore high-order
interactions. Besides, we use visual appearance, language
priors, and spatial cues to complement each other. Experi-
mental results show that our proposed method outperforms
the state-of-the-art methods on two benchmark datasets.
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